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Abstract 

Ultrasound imaging, a non-invasive and cost-effective imaging modality, is probably the most 

preferred diagnostic tool in medicine. Despite its merits, ultrasonograms are usually corrupted 

by multiplicative noise, a consequence that limits doctors to provide more accurate treatments 

and decisions. Attempts to address the problem have been made, but we have found little works 

that adopt the diffusion framework, which scholars have reported that it produces promising 

results in additive noise cases. In the current work, we have modified the classical Perona-Malik 

(PM) diffusion model to deal with multiplicative noise. Inspired by the ability of PM to restore 

semantically critical features, we have embedded a log-based  regularization term, statistically 

modeled to mitigate multiplicative effects in the ultrasound images, into the modified PM. 

Additionally, the diffusivity kernel of PM has been re-designed to ensure that the diffusion 

process is properly steered. Modification of the PM kernel was achieved through integration of 

the half-quadratic diffusivity, which has a corresponding energy functional that is strictly convex, 

a promising mathematical property that encourages unique solutions and guarantees stability of 

the evolutionary system. Our interest is to emphasize regularization in flat image regions while 

maintaining plausible edges and contours. Subjective and quantitative evaluations demonstrate 

that the proposed model produces better results compared with some state-of-the-art methods. 

Even more importantly, our approach guarantees convergence, stability, and robustness when 

tested for a range of ultrasonograms. Probably the intriguing property of our framework is its 

ability to evolve a denoising image over a longer period without smudging or destroying its 

sensitive features. The proposed approach may further be extended and actualized in practical 

imaging devices. 

Keywords: Denoising, anisotropic diffusion, ultrasound image, optimization, Perona-Malik. 

 

 

 

 



African Journal of Applied Research 

Vol. 3, No. 2 (2017), pp. 58-72 

http://www.ajaronline.com 

http://doi.org/10.26437/ajar.03.02.2017.05 

ISSN: 2408-7920 

Copyright ⓒ African Journal of Applied Research    59 

 

INTRODUCTION  

Ultrasonography refers to a diagnostic medical procedure that employs sound waves to visualize 

internal structures of the body. Images generated through this technique are called 

ultrasonograms, and are often cast in screens constructed by special materials. Ultrasonography 

(also called ultrasound imaging), is widely applied to diagnose tissues and organs in humans, It 

is non-invasive, portable, cost-effective, real-time driven, and practically harmless. The 

technique can produce audible sounds of blood flow to collect measures suitable for biomarkers 

in diagnosis (Loizou et al., 2005). Because of these merits, ultrasound imaging is probably one of 

the most prevalent diagnostic techniques preferred by people for treatments.  

Despite the potential values of ultrasound imaging, ultrasonograms (particularly the B-mode 

types) usually suffer from speckle or multiplicative noises. Since 1970s, scholars have been 

reporting the impacts of multiplicative noise in ultrasonograms: in (Dutt, 1995), the author 

employed statistical approaches to model speckle noise as a complex random motion, 

represented as a sum of a larger number of complex phasors that occur when at least two waves 

scattered from different regions of the organ under investigation interfere constructively or 

destructively, a phenomenon that forms bright and dark spots on the image. In practical 

applications, these undesirable consequences lower the usefulness of the image in subsequent 

sub-domain tasks: registration, segmentation, feature extraction, analysis and recognition, and 

reconstruction. Also, multiplicative noise complicates quantitative measurements (Aysal & 

Barner, 2007), an effect that makes the images less useful in machine-driven tasks. Therefore, 

suppressing noise in ultrasonograms is essentially important for proper clinical interpretation and 

quantitative measurements.  

Numerous methods have been developed to improve quality of the ultrasound images. 

In (Mahmoud, Rabaie, Taha, Zahran, & El-samie, 2013),the authors compared different 

denoising filters, designed in both spatial and frequency domains, for reducing speckle noise. 

Other methods for removing noise are based on total variation  (Afonso & Sanches, 2015; Dong 

et al., 2017; Hacini, Hachouf, & Djemal, 2014; Liu, Huang, Xu, & Lv, 2013; Lv, Le, Huang, & 

Jun, 2013; Rudin, Osher, & Fatemi, 1992; Shama, Huang, Liu, & Wang, 2016; Wu & Feng, 

2015), wavelet (Chang, Yu, & Vetterli, 2000; Donoho & Johnstone, 1994; Kour & Kaur, 2016; 

Mastriani, 2008; Zhang, Lin, Wu, Wang, & Cheng, 2015), and linear/nonlinear diffusion 

(Bhateja, Singh, Srivastava, & Singh, 2014; Hu & Tang, 2016; Perona & Malik, 1990; Ramos-

Llordén, Vegas-Sánchez-Ferrero, Martin-Fernandez, Alberola-López, & Aja-Fernández, 2015; 

Xu, Jia, Shi, & Pang, 2016). Of the classes of noise-suppressing methods, the ones based on 

nonlinear diffusion have gained considerable attention of scholars for their ability to remove 

noise while protecting critical image features (Liu & Liu, 2012; Maleki, Narayan, & Baraniuk, 

2013; Weickert & Benhamouda, 1997). In (Perona & Malik, 1990), Perona and Malik established 

a nonlinear diffusion model that integrates a feature-dependent kernel that steers the smoothing 

process in the discriminatory fashion: flat regions and edges in the image receive stronger and 
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weaker smoothing respectively, an intelligible technique that restores high quality images. The 

Perona-Malik model, however, suffers from staircasing problems and tends to add speckles into 

the evolving solutions  (Guo, Sun, Zhang, & Wu, 2012; Wu, Ogada, Sun, & Guo, 2014). 

Furthermore, the corresponding energy functional of the model is non-convex, a property that 

may cause the model to generate multiple solutions.  

Scholars have attempted to address weaknesses of the Perona-Malik (PM) model (Attivissimo, 

Cavone, Lanzolla, & Spadavecchia, 2010; Kour & Kaur, 2016; Kumar & Rattan, 2012;  Liu & 

Liu, 2012; Maiseli, 2016; Maiseli & Gao, 2016; Noe, Workshop, & Palmas, 2006; Xu et al., 

2016) But, most of the improvements concentrate on removing additive noise. In the current 

work, we have integrated a prior term, statistically modeled to eliminate multiplicative noise, 

into the modified version of the Perona-Malik framework. Additionally, the non-convex nature of 

PM potential has been addressed using the half-quadratic technique proposed by Charbonnier et 

al. (Charbonnier, Blanc-Feraud, Aubert, & Barlaud, 1994) .  

PROPOSED DIFFUSION-DRIVEN MODEL 

Motivated by the limitations of the original Perona-Malik model, we propose the minimization 

problem  

 min
𝑢
{∫ 𝐾2 (√1 + (

|𝛻𝑢|

𝐾
)

2

− 1)
Ω

𝑑𝑥 + 𝜆∫ (log 𝑢 +
𝑓

𝑢
)

Ω

𝑑𝑥}, (1) 

where the first and second parts of the formulation’s integrands represent the energy functional, 

𝜌(𝑠 = |𝛻𝑢|), and the fidelity term, respectively; 𝐾 is the shape-defining constant; 𝑢 is the 

denoising (ideal) image; 𝑓 is the noisy image corrupted by multiplicative noise; 𝜆 is the 

regularization term; and Ω is the supporting domain of 𝑢 or 𝑓.  

Proof: To prove that our energy functional is convex, we should perform the second derivative 

test on 𝜌. Therefore,  

 
𝜌′′(𝑠) =

1

(1 + (
𝑠
𝐾)

2

)

3
2

> 0. 
(2) 

The positivity of 𝜌′′ implies that 𝜌 is strictly a convex energy functional, a mathematical 

property that signals stability and uniqueness of the evolving solution.   

Applying the Euler-Lagrange equation to (1) and subjecting the resulting formulation into a 

dynamical system, we get  



African Journal of Applied Research 

Vol. 3, No. 2 (2017), pp. 58-72 

http://www.ajaronline.com 

http://doi.org/10.26437/ajar.03.02.2017.05 

ISSN: 2408-7920 

Copyright ⓒ African Journal of Applied Research    61 

 

𝜕𝑢

𝜕𝑡
= 𝛻 ⋅

(

 
 
 

1

√1 + (
|𝛻𝑢|
𝐾 )

2

𝛻𝑢

)

 
 
 

− 𝜆 (
𝑢 − 𝑓

𝑢2
), 

     (𝑥, 𝑡) ∈ Ω × (0, 𝑇) (3) 

 𝑢(𝑥, 0) = 𝑓, 𝑥 ∈ Ω (4) 

 
𝜕𝑢

𝜕�⃗� 
= 0, (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇), (5) 

Where Ω is the supporting domain of 𝑢 and 𝑇 represents the total evolution time. To understand 

how (3) reacts against edges, the equation should be decomposed into tangential, 𝑢𝑇𝑇, and 

normal, 𝑢𝑁𝑁, components along the isophotes lines of 𝑢 (Figure 1). Thus, let 𝑢(𝑥, 𝑦) be the 

intensity of 𝑢 at the position (𝑥, 𝑦), where |𝛻𝑢(𝑥, 𝑦)| ≠ 0. Furthermore, let 𝑇(𝑥) =

(𝑢𝑥, 𝑢𝑦)/|𝛻𝑢| and 𝑁(𝑥) = (−𝑢𝑦, 𝑢𝑥)/|𝛻𝑢| be orthogonal vectors, where 𝑢𝑥 and 𝑢𝑦 are the first-

order partial derivatives of 𝑢. Also, let 𝑢𝑇𝑇 and 𝑢𝑁𝑁 be the second-order partial derivatives of 𝑢 

along 𝑇 and 𝑁 directions, respectively, and given as   

 

Figure 1. Tangential (𝑢𝑇𝑇) and normal (𝑢𝑁𝑁) components along the isophote lines. 

 

 𝑢𝑇𝑇 = 𝑇
′𝛻2𝑢𝑇 =

1

|𝛻𝑢|2
(𝑢𝑥
2𝑢𝑦𝑦 + 𝑢𝑦

2𝑢𝑥𝑥 − 2𝑢𝑥𝑢𝑦𝑢𝑥𝑦) (6) 

and  

 𝑢𝑁𝑁 = 𝑁
′𝛻2𝑢𝑁 =

1

|𝛻𝑢|2
(𝑢𝑥
2𝑢𝑥𝑥 + 𝑢𝑦

2𝑢𝑦𝑦 + 2𝑢𝑥𝑢𝑦𝑢𝑥𝑦), (7) 

Where 𝛻2𝑢 represents the Hessian matrix of 𝑢. Then, the decomposed formulation of (3) can be 

represented as  

 
𝜕𝑢

𝜕𝑡
=
𝜌′(|𝛻𝑢|)

|𝛻𝑢|
𝑢𝑇𝑇 + 𝜌

′′(|𝛻𝑢|)𝑢𝑁𝑁 − 𝜆 (
𝑢 − 𝑓

𝑢2
). (8) 

Simplifying (8) gives  
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𝜕𝑢

𝜕𝑡
=

1

√1 + (
|𝛻𝑢|
𝐾 )

2

𝑢𝑇𝑇 +
1

(√1 + (
|𝛻𝑢|
𝐾 )

2

)

3 𝑢𝑁𝑁 − 𝜆 (
𝑢 − 𝑓

𝑢2
). 

(9) 

 

The formulation in (9) provides some useful edge-preserving characteristics: first, the model 

encourages forward diffusion, a property that ensures regularity in the smoothing process. 

Second, 𝑢𝑇𝑇 and 𝑢𝑁𝑁 are properly balanced to promote the edge-driven regularization behavior. 

In smooth image regions where|𝛻𝑢| → 0, (9) reduces to  

 
𝜕𝑢

𝜕𝑡
= 𝑢𝑇𝑇 + 𝑢𝑁𝑁 − 𝜆 (

𝑢 − 𝑓

𝑢2
), (10) 

This implies that these regions receive uniform smoothing similar to the heat equation. Near 

edges where |𝛻𝑢| → ∞, the coefficient of 𝑢𝑁𝑁, which has a larger denominator, diminishes faster 

than that of 𝑢𝑇𝑇. This dominance behavior of the 𝑢𝑇𝑇 component causes the proposed model to 

preserve meaningful image features.  

 

Numerical implementation 

Our framework was implemented using the four-point explicit numerical scheme, which 

computes dependent variables using the known values. This type of scheme is simple and 

generates convincing results that are more accurate and reliable (Langtangen, 2013). Let 𝛻𝑊,𝛻𝑁, 

𝛻𝑆, and 𝛻𝐸 represent image gradients in the West, North, South, and East directions in the 

scheme. Then, the discrete image gradients can be defined as  

𝛻𝑊𝑢𝑖,𝑗 = 𝑢𝑖 ,𝑗−1− 𝑢𝑖,𝑗,   𝛻𝑁𝑢𝑖,𝑗 = 𝑢𝑖−1,𝑗− 𝑢𝑖,𝑗, 

𝛻𝑆𝑢𝑖,𝑗 = 𝑢𝑖+1,𝑗− 𝑢𝑖,𝑗,   and  𝛻𝐸𝑢𝑖,𝑗 = 𝑢𝑖 ,𝑗+1− 𝑢𝑖,𝑗 

for 0 ≤ 𝑖 ≤ 𝐼  (number of rows) and 0 ≤ 𝑗 ≤ 𝐽  (number of columns). The corresponding 

discrete conduction coefficients are  

𝐶𝑊 =
1

√1 + (
|𝛻𝑊𝑢𝑖,𝑗|
𝐾 )

2

,   𝐶𝑁 =
1

√1 + (
|𝛻𝑁𝑢𝑖,𝑗|
𝐾 )

2

, 

𝐶𝑆 =
1

√1 + (
|𝛻𝑆𝑢𝑖,𝑗|
𝐾 )

2

,   and  𝐶𝐸 =
1

√1 + (
|𝛻𝐸𝑢𝑖,𝑗|
𝐾 )

2

. 
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Therefore, the discretized divergence term can be defined as  

 div𝑖,𝑗 = 𝐶𝑁𝛻𝑁𝑢𝑖,𝑗 + 𝐶𝑆𝛻𝑆𝑢𝑖,𝑗 + 𝐶𝑊𝛻𝑊𝑢𝑖,𝑗 + 𝐶𝐸𝛻𝐸𝑢𝑖,𝑗 (11) 

and the steepest descent equation is  

 𝑢𝑖,𝑗
𝑛+1 = 𝑢𝑖,𝑗

𝑛 + 𝜏(div𝑖,𝑗
𝑛 − 𝜆(𝑢𝑖,𝑗

𝑛 − 𝑓𝑖,𝑗
𝑛 )/((𝑢𝑖,𝑗

𝑛 )2 + 𝜖)), (12) 

where 𝑢𝑖,𝑗
0 = 𝑓𝑖,𝑗 = 𝑓(𝑖ℎ, 𝑗ℎ), 𝑢𝑖,0

𝑛 = 𝑢𝑖,1
𝑛 , 𝑢0,𝑗

𝑛 = 𝑢1,𝑗
𝑛 , 𝑢𝐼,𝑖

𝑛 = 𝑢𝐼−1,𝑖
𝑛 , and 𝑢𝑖,𝐽

𝑛 = 𝑢𝑖,𝐽−1
𝑛 ; ℎ is the grid 

step size and 𝜖 > 0 defines a small stabilizing constant. 

EXPERIMENTS 

Several experiments were conducted to test the performances of various denoising methods: 

PM (Perona & Malik, 1990), Total variation (Rudin et al., 1992), Guo (Guo et al., 2012) and 

Charbonnier (Charbonnier et al., 1994). In the first experiment, speckle (multiplicative) noise of 

density 0.04 was added into two different synthetic images, each 300 × 300 in size, namely 

“Geometry” and “Squares”. Next, the methods were applied on the noisy images to recover their 

original versions. Then, objective quality metrics, namely PSNR (peak signal to noise ratio) and 

SSIM (structural similarity) were used to evaluate the restoration results for each method. The 

aspect of edge recovery was tested through image profiles: for each restored image, a line graph 

through intensity values along a specific row (arbitrarily taken half way on the vertical 

dimension) was drawn. These profiles were compared against those of the original and noisy 

images. We also executed an experiment to compare stability aspects between our model and that 

proposed by Perona and Malik. In this case, the noisy synthetic images were evolved by the 

models over 1000, 3000, and 5000 iterations. We define a stable method as the one that can 

maintain a peak quality value (PSNR or SSIM) regardless of the number of iterations. In fact, 

this observation is the expected attribute for a convex energy functional like ours. 
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The second experiment involved real images of common carotid arteries (CCAs) corrupted by 

multiplicative noises. These CCAs were imaged from different patients. Then, the noise removal 

methods were applied to the images in an attempt to restore their (unknown) original versions. 

Because of a lack of the ground-truth images, comparisons on the results generated from various 

methods were done subjectively through visual assessments: an appealing image contains more 

details and holds semantically important features (edges, contours, and lines). In all experiments, 

parameters of the proposed model were fixed: 𝐾 = 0.09, 𝜆 = 2.90, 𝑑𝑡 = 0.07, and 𝜖 = 1 ×

10−6. Simulations were conducted using MATLAB R2016b. Implementation codes of our 

framework have been shared in the MatlabCentral
1
 public repository.  

 

Performance Evaluation 

To quantify the quality of our model, we used PSNR (Wang & Bovik, 2009)  and SSIM (Wang, 

Bovik, Sheikh, & Simoncelli, 2004) performance indices. PSNR measures signal strength in the 

image with respect to noise, and is governed by the equation  

 PSNR = 20 log10 (
𝑀𝐴𝑋𝑓

√𝑀𝑆𝐸
), (13) 

where MAX𝑓 is the maximum gray level in 𝑓 and MSE represents the mean squared error. Higher 

value of PSNR signifies a stronger signal and vice versa. Scholars have, however, criticized the 

metric because it fails to emulate the human visual system(Wang et al., 2004) . Hence, SSIM was 

proposed to address the challenge. This quality index is defined as  

 SSIM =
(2𝜇𝑢𝜇𝑓 + 𝐶1)(2𝜎𝑢𝑓 + 𝐶2)

(𝜇𝑢2 + 𝜇𝑓
2 + 𝐶1)(𝜎𝑢2 + 𝜎𝑓

2 + 𝐶2)
, (14) 

 

 

 

 

 

 

 

 

1
https://www.mathworks.com/matlabcentral/fileexchange/62569-diffusion-steered-denoising-

framework-for-suppressing-multiplicative-noise-in-ultrasonograms 
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where, 𝜇𝑢 and 𝜇𝑓 are the averages of 𝑢 and 𝑓, respectively; 𝜎𝑢𝑓 is the covariance of 𝑢 and 𝑓; 𝜎𝑢 

and 𝜎𝑓 are the standard deviations of 𝑢 and 𝑓, respectively; and 𝐶1 and 𝐶2 are the stabilizing 

constants. The value of SSIM ranges between 0 and 1. SSIM is higher for a visually appealing 

image, and vice versa.  

 

RESULTS AND DISCUSSION 

Quantitative results demonstrate that the proposed method maintains the peak quality values over 

a longer period (Figure 2). This observation indicates that our framework guarantees stability and 

may be applied with little restrictions on the number of iterations. (Figure 3) shows that, even at 

larger iteration numbers, our framework generates appealing images containing useful features. 

The framework’s stability is attributed to the convexity of our energy functional, a property that 

reinforces convergence of the evolution system. On the contrary, the Perona-Malik model tends 

to smudge and blur critical image features as the evolution system advances. Investigating profile 

maps, the proposed method shows that it generates sharper curves that are closer to the original 

ones (Figure 4). Hence, we infer that our approach can produce plausible edges. Numerical 

results in Table 1 further insist higher PSNR and MSSIM values attained by our method.  

Visual results from synthetic images demonstrate that the proposed method suppresses noise 

more effectively and restores images with lower errors (Figures 5). Furthermore, compared with 

other denoising methods, our approach generates promising restoration results when applied to 

CCA images (Figures 6). Coupled with several strengths, the observation justifies our claims that 

the proposed noise-suppressing framework may be suitable to denoise ultrasound images 

corrupted by natural noise. From (Figures 6), the restored CCA images by our method are 

detailed and lack unnecessary artifacts, the observation that can assist doctors to provide more 

accurate and appropriate treatments to patients.  

Appealing visual and subjective results demonstrated by our framework can be explained in the 

perspective of the decomposed formulation in (9), which shows an effective interplay between 

𝑢𝑇𝑇 and 𝑢𝑁𝑁 regularization components. The equation gives an idea that the proposed denoising 

method describes forward diffusion that strengthen edges and contours, as depicted through the 

denoising results of synthetic images. Presence of the backward diffusion, however, would 

further enhance our results because this mode of noise removal tends to sharpen critical image 

features. Perhaps one approach to achieve both forward and backward diffusions is to integrate 

other types of smoothing functionals, such as the total variation, into the current framework. The 

integration should be done in such a way that potential characteristics of these other functionals 

are harnessed properly. It may be interesting, for instance, to investigate how the Charbonnier 

model, which has been adopted in the current study, and the TV model can be integrated into the 
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denoising framework to produce optimal results, sharper and detailed images with superior 

objective quality values. 

 

 

Figure 2: Peak-signal-to-noise-ratio (PSNR) and structural similarity (SSIM) versus number of 

iterations. 
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Figure 3: Perona-Malik model and our method applied on the noisy “Geometry” synthetic 

image. Experiments executed for different number of iterations. 

 

 

(a) Chabonnier                                                                         (b) PM 

 

(c) TV                                                                           (d) Our model 

Figure 4: Intensity image profiles of different denoising methods. 
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Table 1: PSNR (peak-signal-to-noise-ratio) and SSIM (structural similarity) of images generated 

by different methods. 

 

Method 

PSNR SSIM 

Geometry  Squares Geometry Squares 

Guo 25.55 25.25 0.8684 0.9183 

PM 29.09 30.22 0.9175 0.9221 

Charbonnier 29.59 29.90 0.9254 0.9508 

TV 30.87 30.49 0.9523 0.9851 

Proposed model 31.11 30.65 0.9770 0.9917 

 

 
(a) Original            (b) Noisy              (c) Guo                 (d) PM                  (e) TV                  (f) 

Ours 

Figure 5: Different denoising methods applied on the noisy synthetic images: first row, denoising 

results of “Geometry”; and second row, “Squares" synthetic images.  PM (Perona-Malik) and 

TV (Total Variation). 
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     (a) Noisy              (b) PM                (c) TV                    (d) Guo                   (e) Charb             (f) 

Ours 

Figure 6: Different denoising methods applied on a noisy common carotid artery: first row, 

patient #1 and second row, patient #2. 

 

CONCLUSION 

We have proposed a diffusion-steered framework to suppress noise in ultrasound images. Our 

method incorporates a strictly convex Charbonnier potential and a prior term adapted for 

multiplicative noise types. The corresponding energy functional of the proposed model offers 

promising mathematical properties (smoothness, convexity, and stability) that ensure favorable 

solutions. Experimental results demonstrate that the proposed approach generates appealing 

images that contain higher values of PSNR and SSIM compared with other classical methods. 

We have applied the new method on actual ultrasonograms to demonstrate the effectiveness of 

our framework in real-world applications.  
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