Machine Learning Algorithms for Predicting Hospital Readmission and Mortality Rates in Patients with Heart Failure

Authors

  • T. Rizinde University of Rwanda, Kigali, Rwanda.
  • I. Ngaruye University of Rwanda, Kigali, Rwanda.
  • N. D. Cahill Rochester Institute of Technology, Rochester, NY 14623, USA

DOI:

https://doi.org/10.26437/ajar.v10i1.695

Keywords:

Heart failure. hospital. machine learning. mortality. readmission

Abstract

Purpose: The potential of predictive analytics in enhancing resource allocation and patient care for Heart failure (HF) outcomes is significant. This review aims to highlight this potential by analyzing existing studies and identifying the main barriers and challenges to applicability in all settings.

Design/ Methodology/ Approach: A comprehensive search of related articles was meticulously conducted across electronic databases, including Google Scholar, Web of Science, and PubMed. Using precise search phrases and keywords, 1,835 scholarly articles published between 1 January 2017 and 14 May 2024 were retrieved. Only 23 articles that met the strict inclusion criteria were considered, ensuring the validity of the findings. A quantitative meta-analysis approach was utilised.

Research Limitation/Implication: This research offers insights into enhancing healthcare outcomes as we analyse the challenges and feasibility of applying ML algorithms to predict heart failure outcomes in low-income settings.

Findings: The challenges include scalability, ethical and legal issues, the choice of appropriate ML model, interpretability, data availability, and healthcare professional mistrust of these ML algorithms.

Practical implications: This study offers practical strategies to bridge the gap between clinical practice and predictive analytics in these regions. These strategies should inspire and motivate healthcare professionals, researchers, and policymakers to consider and implement them.

Social implication: This study provides insights that may improve HF outcomes and healthcare delivery.

Originality/Value: The review identifies current gaps in the research, such as the need for more robust validation studies, the challenge of model interpretability, and the necessity for models that can be easily integrated into clinical workflows.

Author Biographies

T. Rizinde, University of Rwanda, Kigali, Rwanda.

He is a Lecturer with the Department of Applied Statistics, College of Business and Economics, University of Rwanda, Kigali, Rwanda

I. Ngaruye, University of Rwanda, Kigali, Rwanda.

He is a Senior Lecturer with Department of Applied Mathematics, College of Science and Technology, University of Rwanda, Kigali, Rwanda.

N. D. Cahill, Rochester Institute of Technology, Rochester, NY 14623, USA

He is a Professor at the School of Mathematics and Statistics, Rochester Institute of Technology, Rochester, New York, USA.

References

Adler, E. D., Voors, A. A., Klein, L., Macheret, F., Braun, O. O., Urey, M. A., … & Yagil, A. (2020a). Improving risk prediction in heart failure using machine learning. European Journal of Heart Failure, 22(1), 139–147. https://doi.org/10.1002/ejhf.1628

Adler, E. D., Voors, A. A., Klein, L., Macheret, F., Braun, O. O., Urey, M. A., …& Yagil, A. (2020b). Improving risk prediction in heart failure using machine learning. European Journal of Heart Failure, 22(1), 139–147. https://doi.org/10.1002/ejhf.1628

Agbor, V. N., Ntusi, N. A. B., & Noubiap, J. J. (2020a). An overview of heart failure in low- and middle-income countries. Cardiovascular Diagnosis and Therapy, 10(2), 244–251. https://doi.org/10.21037/cdt.2019.08.03

Agbor, V. N., Ntusi, N. A. B., & Noubiap, J. J. (2020b). An overview of heart failure in low- and middle-income countries. Cardiovascular Diagnosis and Therapy, 10(2), 24451–24251. https://doi.org/10.21037/cdt.2019.08.03

Alabdaljabar, M. S., Hasan, B., Noseworthy, P. A., Maalouf, J. F., Ammash, N. M., & Hashmi, S. K. (2023). Machine Learning in Cardiology: A Potential Real-World Solution in Low- and Middle-Income Countries. Journal of Multidisciplinary Healthcare, 16, 285–295. https://doi.org/10.2147/JMDH.S383810

Alajmani, S., & Jambi, K. (2020). Assessing Advanced Machine Learning Techniques for Predicting Hospital Readmission. International Journal of Advanced Computer Science and Applications, 11(2). https://doi.org/10.14569/IJACSA.2020.0110249

Alanazi, R. (2022). Identification and prediction of chronic diseases using machine learning approach. Journal of Healthcare Engineering, 2022. Retrieved from https://downloads.hindawi.com/archive/2022/2826127.pdf

Aldahiri, A., Alrashed, B., & Hussain, W. (2021). Trends in Using IoT with Machine Learning in Health Prediction System. Forecasting, 3(1), 181–206. https://doi.org/10.3390/forecast3010012

Allam, A., Nagy, M., Thoma, G., & Krauthammer, M. (2019). Neural networks versus Logistic regression for 30 days all-cause readmission prediction. Scientific Reports, 9(1), 9277.

Alotaibi, F. S. (2019). Implementation of machine learning model to predict heart failure disease. International Journal of Advanced Computer Science and Applications, 10(6).

Angraal, S., Mortazavi, B. J., Gupta, A., Khera, R., Ahmad, T., Desai, N. R., … & Krumholz, H. M. (2020a). Machine learning prediction of mortality and hospitalization in heart failure with preserved ejection fraction. JACC: Heart Failure, 8(1), 12–21.

Angraal, S., Mortazavi, B. J., Gupta, A., Khera, R., Ahmad, T., Desai, N. R., …& Krumholz, H. M. (2020b). Machine learning prediction of mortality and hospitalization in heart failure with preserved ejection fraction. JACC: Heart Failure, 8(1), 12–21.

Artetxe, A., Beristain, A., & Grana, M. (2018). Predictive models for hospital readmission risk: A systematic review of methods. Computer Methods and Programs in Biomedicine, 164, 49–64.

Ashfaq, A., Sant’Anna, A., Lingman, M., & Nowaczyk, S. (2019). Readmission prediction using deep learning on electronic health records. Journal of Biomedical Informatics, 97, 103256.

Austin, D. E., Lee, D. S., Wang, C. X., Ma, S., Wang, X., Porter, J., & Wang, B. (2022). Comparison of machine learning and the regression-based EHMRG model for predicting early mortality in acute heart failure. International Journal of Cardiology, 365, 78–84.

Awan, S. E., Bennamoun, M., Sohel, F., Sanfilippo, F. M., Chow, B. J., & Dwivedi, G. (2019). Feature selection and transformation by machine learning reduce variable numbers and improve prediction for heart failure readmission or death. PloS one, 14(6), e0218760.

Awan, S. E., Bennamoun, M., Sohel, F., Sanfilippo, F. M., & Dwivedi, G. (2019). Machine learning‐based prediction of heart failure readmission or death: implications of choosing the right model and the right metrics. ESC heart failure, 6(2), 428-435.

Beam, A. L., & Kohane, I. S. (2018). Big Data and Machine Learning in Health Care. JAMA, 319(13), 1317–1318. https://doi.org/10.1001/jama.2017.18391

Benti, N. E., Chaka, M. D., & Semie, A. G. (2023). Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects. Sustainability, 15(9), 7087. https://doi.org/10.3390/su15097087

Bloomfield, G. S., Barasa, F. A., Doll, J. A., & Velazquez, E. J. (2013). Heart failure in sub-Saharan Africa. Current Cardiology Reviews, 9(2), 157–173.

Boodhun, N., & Jayabalan, M. (2018). Risk prediction in life insurance industry using supervised learning algorithms. Complex & Intelligent Systems, 4(2), 145–154.

Bozkurt, B., Coats, A. J., Tsutsui, H., Abdelhamid, M., Adamopoulos, S., Albert, N., ... & Zieroth, S. (2021). Universal definition and classification of heart failure: A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the universal definition of heart failure. Journal of cardiac failure, 27(4), 387-413.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953

Chen, R., Lu, A., Wang, J., Ma, X., Zhao, L., Wu, W.,.. & Yu, Z. (2019). Using machine learning to predict one-year cardiovascular events in patients with severe dilated cardiomyopathy. European Journal of Radiology, 117, 178–183.

Chicco, D., & Jurman, G. (2020). Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Medical Informatics and Decision Making, 20(1), 1–16.

Chirinos, J. A., Orlenko, A., Zhao, L., Basso, M. D., Cvijic, M. E., Li, Z., …& Cappola, T. P. (2020). Multiple Plasma Biomarkers for Risk Stratification in Patients With Heart Failure and Preserved Ejection Fraction. Journal of the American College of Cardiology, 75(11), 1281–1295. https://doi.org/10.1016/j.jacc.2019.12.069

Cho, S. M., Austin, P. C., Ross, H. J., Abdel-Qadir, H., Chicco, D., Tomlinson, G., …& Billia, F. (2021). Machine learning compared with conventional statistical models for predicting myocardial infarction readmission and mortality: A systematic review. Canadian Journal of Cardiology, 37(8), 1207–1214.

Çolak, M., Sivri, T. T., Akman, N. P., Berkol, A., & Ekici, Y. (2023). Disease prognosis using machine learning algorithms based on new clinical dataset. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 65(1), 52–68.

Columbia DBMI Home—Columbia DBMI. (2019, June 11). Retrieved 10 April 2024, from https://www.dbmi.columbia.edu/, https://www.dbmi.columbia.edu/

Croon, P. M., Selder, J. L., Allaart, C. P., Bleijendaal, H., Chamuleau, S. A. J., Hofstra, L., & Winter, M. M. (2022). Current state of artificial intelligence-based algorithms for hospital admission prediction in patients with heart failure: A scoping review. European Heart Journal - Digital Health, 3(3), 415–425. https://doi.org/10.1093/ehjdh/ztac035

Dai, Q., Sherif, A. A., Jin, C., Chen, Y., Cai, P., & Li, P. (2022). Machine learning predicting mortality in sarcoidosis patients admitted for acute heart failure. Cardiovascular Digital Health Journal, 3(6), 297–304. https://doi.org/10.1016/j.cvdhj.2022.08.001

Desai, R. J., Wang, S. V., Vaduganathan, M., Evers, T., & Schneeweiss, S. (2020). Comparison of machine learning methods with traditional models for use of administrative claims with electronic medical records to predict heart failure outcomes. JAMA Network Open, 3(1), e1918962–e1918962.

Dhabarde, S., Mahajan, R., Mishra, S., Chaudhari, S., Manelu, S., & Shelke, N. S. (2022). Disease prediction using machine learning algorithms. International Research Journal of Modernization in Engineering Technology and Science, 4, 379–384.

Dokainish, H., Teo, K., Zhu, J., Roy, A., AlHabib, K. F., ElSayed, A.,.. & Mondo, C. (2017). Global mortality variations in patients with heart failure: Results from the International Congestive Heart Failure (INTER-CHF) prospective cohort study. The Lancet Global Health, 5(7), e665–e672. https://doi.org/10.1016/S2214-109X(17)30196-1

Fatima, M., & Pasha, M. (2017). Survey of Machine Learning Algorithms for Disease Diagnostic. Journal of Intelligent Learning Systems and Applications, 9(1), 1–16. https://doi.org/10.4236/jilsa.2017.91001

Fregoso-Aparicio, L., Noguez, J., Montesinos, L., & García-García, J. A. (2021). Machine learning and deep learning predictive models for type 2 diabetes: A systematic review. Diabetology & Metabolic Syndrome, 13(1), 148. https://doi.org/10.1186/s13098-021-00767-9

Frizzell, J. D., Liang, L., Schulte, P. J., Yancy, C. W., Heidenreich, P. A., Hernandez, A. F.,.. & Laskey, W. K. (2017). Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: Comparison of machine learning and other statistical approaches. JAMA Cardiology, 2(2), 204–209.

Gandhi, K., Mittal, M., Gupta, N., & Dhall, S. (2020). Disease prediction using machine learning. International Journal for Research in Applied Science and Engineering Technology, 8(6). Retrieved from https://www.academia.edu/download/63686168/7720200620-126547-18e0xrm.pdf

Gheorghiade, M., Albert, N. M., Curtis, A. B., Thomas Heywood, J., McBride, M. L., Inge, P. J., ... & Fonarow, G. C. (2012). Medication dosing in outpatients with heart failure after implementation of a practice‐based performance improvement intervention: findings from IMPROVE HF. Congestive Heart Failure, 18(1), 9-17.

Gleeson, S., Liao, Y.-W., Dugo, C., Cave, A., Zhou, L., Ayar, Z., … & Gavin, A. (2017). ECG-derived spatial QRS-T angle is associated with ICD implantation, mortality and heart failure admissions in patients with LV systolic dysfunction. PloS One, 12(3), e0171069.

Glezeva, N., Gallagher, J., Ledwidge, M., O’Donoghue, J., McDonald, K., Chipolombwe, J., & Watson, C. (2015). Heart failure in sub‐Saharan Africa: Review of the aetiology of heart failure and the role of point‐of‐care biomarker diagnostics. Tropical Medicine and International Health, 20(5), 8.

Golas, S. B., Shibahara, T., Agboola, S., Otaki, H., Sato, J., Nakae, T., …& Jethwani, K. (2018). A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: A retrospective analysis of electronic medical records data. BMC Medical Informatics and Decision Making, 18(1), 44. https://doi.org/10.1186/s12911-018-0620-z

Guidi, G., Pettenati, M. C., Melillo, P., & Iadanza, E. (2014). A machine learning system to improve heart failure patient assistance. IEEE Journal of Biomedical and Health Informatics, 18(6), 1750–1756.

Guo, A., Pasque, M., Loh, F., Mann, D. L., & Payne, P. R. (2020). Heart failure diagnosis, readmission, and mortality prediction using machine learning and artificial intelligence models. Current Epidemiology Reports, 7, 212–219.

Hearn, J., Ross, H. J., Mueller, B., Fan, C.-P., Crowdy, E., Duhamel, J., … & Manlhiot, C. (2018). Neural networks for prognostication of patients With heart failure: Improving performance through the incorporation of breath-by-breath data from cardiopulmonary exercise testing. Circulation: Heart Failure, 11(8), e005193.

Hyland, S. L., Faltys, M., Hüser, M., Lyu, X., Gumbsch, T., Esteban, C., … & Merz, T. M. (2020). Early prediction of circulatory failure in the intensive care unit using machine learning. Nature Medicine, 26(3), 364–373. https://doi.org/10.1038/s41591-020-0789-4

Ishaq, A., Sadiq, S., Umer, M., Ullah, S., Mirjalili, S., Rupapara, V., & Nappi, M. (2021). Improving the Prediction of Heart Failure Patients’ Survival Using SMOTE and Effective Data Mining Techniques. IEEE Access, 9, 39707–39716. https://doi.org/10.1109/ACCESS.2021.3064084

Jagannatha, A. N., & Yu, H. (2016a). Bidirectional RNN for medical event detection in electronic health records. Proceedings of the Conference. Association for Computational Linguistics. North American Chapter. Meeting, 2016, 473. NIH Public Access.

Jagannatha, A. N., & Yu, H. (2016b). Structured prediction models for RNN based sequence labeling in clinical text. Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing, 2016, 856. NIH Public Access.

Jasinska-Piadlo, A., Bond, R., Biglarbeigi, P., Brisk, R., Campbell, P., & McEneaneny, D. (2022). What can machines learn about heart failure? A systematic literature review. International Journal of Data Science and Analytics, 13(3), 163–183.

Jiang, W., Siddiqui, S., Barnes, S., Barouch, L. A., Korley, F., Martinez, D. A., … & Levin, S. (2019). Readmission Risk Trajectories for Patients With Heart Failure Using a Dynamic Prediction Approach: Retrospective Study. JMIR Medical Informatics, 7(4), e14756. https://doi.org/10.2196/14756

Khan, M. S., Shahid, I., Fonarow, G. C., & Greene, S. J. (2022). Classifying heart failure based on ejection fraction: Imperfect but enduring. European Journal of Heart Failure, 24(7), 1154–1157. https://doi.org/10.1002/ejhf.2470

Krumholz, H. M., Coppi, A. C., Warner, F., Triche, E. W., Li, S.-X., Mahajan, S., … & Dorsey, K. (2019). Comparative effectiveness of new approaches to improve mortality risk models from Medicare claims data. JAMA Network Open, 2(7), e197314–e197314.

Kumar, A., Sharma, G. K., & Prakash, U. M. (2021). Disease prediction and doctor recommendation system using machine learning approaches. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 9, 34–44.

Kwon, J., Kim, K.-H., Jeon, K.-H., Lee, S. E., Lee, H.-Y., Cho, H.-J., … & Kim, J.-J. (2019). Artificial intelligence algorithm for predicting mortality of patients with acute heart failure. PloS One, 14(7), e0219302.

Kwon, J. M., Kim, K. H., Jeon, K. H., Lee, S. E., Lee, H. Y., Cho, H. J., ... & Oh, B. H. (2019). Artificial intelligence algorithm for predicting mortality of patients with acute heart failure. PloS one, 14(7), e0219302.

Leong, D. P., Joseph, P., McMurray, J. J. V., Rouleau, J., Maggioni, A. P., Lanas, F., …& (2023). Frailty and outcomes in heart failure patients from high-, middle-, and low-income countries. European Heart Journal, 44(42), 4435–4444. https://doi.org/10.1093/eurheartj/ehad595

Li, F., Xin, H., Zhang, J., Fu, M., Zhou, J., & Lian, Z. (2021). Prediction model of in-hospital mortality in intensive care unit patients with heart failure: Machine learning-based, retrospective analysis of the MIMIC-III database. BMJ Open, 11(7), e044779. https://doi.org/10.1136/bmjopen-2020-044779

Li, J., Li, X., Liu, H., Gao, L., Wang, W., Wang, Z., … & Wang, Q. (2023). Climate change impacts on wastewater infrastructure: A systematic review and typological adaptation strategy. Water Research, 242, 120282. https://doi.org/10.1016/j.watres.2023.120282

Lorenzoni, G., Sabato, S. S., Lanera, C., Bottigliengo, D., Minto, C., Ocagli, H., … & Pisanò, F. (2019). Comparison of machine learning techniques for prediction of hospitalization in heart failure patients. Journal of Clinical Medicine, 8(9), 1298.

Miao, F., Cai, Y.-P., Zhang, Y.-X., Fan, X.-M., & Li, Y. (2018). Predictive modeling of hospital mortality for patients with heart failure by using an improved random survival forest. IEEE Access, 6, 7244–7253.

Morrill, J., Qirko, K., Kelly, J., Ambrosy, A., Toro, B., Smith, T., … & Swaminathan, S. (2022). A Machine Learning Methodology for Identification and Triage of Heart Failure Exacerbations. Journal of Cardiovascular Translational Research, 15(1), 103–115. https://doi.org/10.1007/s12265-021-10151-7

Mortazavi, B. J., Downing, N. S., Bucholz, E. M., Dharmarajan, K., Manhapra, A., Li, S.-X., & Krumholz, H. M. (2016). Analysis of machine learning techniques for heart failure readmissions. Circulation: Cardiovascular Quality and Outcomes, 9(6), 629–640.

Mpanya, D., Celik, T., Klug, E., & Ntsinjana, H. (2021a). Machine learning and statistical methods for predicting mortality in heart failure. Heart Failure Reviews, 26(3), 545–552.

Mpanya, D., Celik, T., Klug, E., & Ntsinjana, H. (2021b). Predicting mortality and hospitalization in heart failure using machine learning: A systematic literature review. IJC Heart & Vasculature, 34, 100773.

Nakajima, K., Nakata, T., Doi, T., Tada, H., & Maruyama, K. (2020). Machine learning-based risk model using 123 I-metaiodobenzylguanidine to differentially predict modes of cardiac death in heart failure. Journal of Nuclear Cardiology, 1–12.

Nakayama, L. F., Zago Ribeiro, L., Novaes, F., Miyawaki, I. A., Miyawaki, A. E., de Oliveira, J. A. E., ... & Silva, P. S. (2023). Artificial intelligence for telemedicine diabetic retinopathy screening: a review. Annals of Medicine, 55(2), 2258149.

Navarro, C. L. A., Damen, J. A. A., Takada, T., Nijman, S. W. J., Dhiman, P., Ma, J., … & Hooft, L. (2021). Risk of bias in studies on prediction models developed using supervised machine learning techniques: Systematic review. BMJ, 375, n2281. https://doi.org/10.1136/bmj.n2281

Nduka, A., Samual, J., Elango, S., Divakaran, S., Umar, U., & SenthilPrabha, R. (2019). Internet of Things Based Remote Health Monitoring System Using Arduino. 2019 Third International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 572–576. https://doi.org/10.1109/I-SMAC47947.2019.9032438

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ (Clinical Research Ed.), 372, n71. https://doi.org/10.1136/bmj.n71

Peirlinck, M., Sahli Costabal, F., Sack, K. L., Choy, J. S., Kassab, G. S., Guccione, J. M., & Kuhl, E. (2019). Using machine learning to characterize heart failure across the scales. Biomechanics and Modeling in Mechanobiology, 18, 1987–2001.

Plati, D. K., Tripoliti, E. E., Karanasiou, G. S., Rammos, A., Bechlioulis, A., Watson, C. J., & Naka, K. K. (2022). Machine learning techniques for predicting and managing heart failure. Predicting Heart Failure: Invasive, Non-Invasive, Machine Learning and Artificial Intelligence Based Methods, 189–226.

Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New England Journal of Medicine, 380(14), 1347-1358.

Saito, T., & Rehmsmeier, M. (2015). The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS One, 10(3), e0118432.

Savarese, G., Becher, P. M., Lund, L. H., Seferovic, P., Rosano, G. M. C., & Coats, A. J. S. (2023). Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovascular Research, 118(17), 3272–3287. https://doi.org/10.1093/cvr/cvac013

Shahim, B. (2023). Global Public Health Burden of Heart Failure: An Updated Review. Retrieved from https://www.cfrjournal.com/articles/global-public-health-burden-heart-failure-updated-review

Shameer, K., Johnson, K. W., Yahi, A., Miotto, R., Li, L. I., Ricks, D., …& Gelijns, S. (2017). Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: A case-study using Mount Sinai heart failure cohort. Pacific Symposium on Biocomputing 2017, 276–287. World Scientific.

Shin, S., Austin, P. C., Ross, H. J., Abdel-Qadir, H., Freitas, C., Tomlinson, G., …& Billia, F. (2021). Machine learning vs. Conventional statistical models for predicting heart failure readmission and mortality. ESC Heart Failure, 8(1), 106–115.

Song, X., Tong, Y., Luo, Y., Chang, H., Gao, G., Dong, Z., …& Tong, R. (2023). Predicting 7-day unplanned readmission in elderly patients with coronary heart disease using machine learning. Frontiers in Cardiovascular Medicine, 10. https://doi.org/10.3389/fcvm.2023.1190038

Stampehl, M., Friedman, H. S., Navaratnam, P., Russo, P., Park, S., & Obi, E. N. (2020). Risk assessment of post-discharge mortality among recently hospitalized Medicare heart failure patients with reduced or preserved ejection fraction. Current Medical Research and Opinion, 36(2), 179–188.

Sun, Z., Dong, W., Shi, H., Ma, H., Cheng, L., & Huang, Z. (2022). Comparing machine learning models and statistical models for predicting heart failure events: A systematic review and meta-analysis. Frontiers in Cardiovascular Medicine, 9, 647.

Tian, P., Liang, L., Zhao, X., Huang, B., Feng, J., Huang, L., …& Zhang, Y. (2023). Machine Learning for Mortality Prediction in Patients With Heart Failure With Mildly Reduced Ejection Fraction. Journal of the American Heart Association, 12(12), e029124. https://doi.org/10.1161/JAHA.122.029124

Turgeman, L., & May, J. H. (2016). A mixed-ensemble model for hospital readmission. Artificial Intelligence in Medicine, 72, 72–82.

Uddin, S., Khan, A., Hossain, M. E., & Moni, M. A. (2019). Comparing different supervised machine learning algorithms for disease prediction. BMC Medical Informatics and Decision Making, 19(1), 1–16.

Wang, H., Li, Y., Chai, K., Long, Z., Yang, Z., Du, M., … & Yang, J. (2024). Mortality in patients admitted to hospital with heart failure in China: A nationwide Cardiovascular Association Database-Heart Failure Centre Registry cohort study. The Lancet Global Health, 12(4), e611–e622. https://doi.org/10.1016/S2214-109X(23)00605-8

WHO. (2024). Health equity. Retrieved 16 March 2024, from https://www.who.int/health-topics/health-equity#tab=tab_1

World Health Organization. (2024). Cardiovascular diseases. Retrieved 13 March 2024, from https://www.who.int/health-topics/cardiovascular-diseases

World Heart Federation. (2024). Heart Failure | What We Do. Retrieved 13 March 2024, from World Heart Federation website: https://world-heart-federation.org/what-we-do/heart-failure/

Xu, L., Cao, F., Wang, L., Liu, W., Gao, M., Zhang, L., … & Lin, M. (2024). Machine learning model and nomogram to predict the risk of heart failure hospitalization in peritoneal dialysis patients. Renal Failure, 46(1), 2324071. https://doi.org/10.1080/0886022X.2024.2324071

Xu, Z., Shen, D., Kou, Y., & Nie, T. (2022). A Synthetic Minority Oversampling Technique Based on Gaussian Mixture Model Filtering for Imbalanced Data Classification. IEEE Transactions on Neural Networks and Learning Systems, 1–14. https://doi.org/10.1109/TNNLS.2022.3197156

Yap, J. (2020). Risk stratification in heart failure: Existing challenges and potential promise. International Journal of Cardiology, 313, 97–98.

Zhao, Y., Wood, E. P., Mirin, N., Cook, S. H., & Chunara, R. (2021). Social determinants in machine learning cardiovascular disease prediction models: A systematic review. American Journal of Preventive Medicine, 61(4), 596–605.

Downloads

Published

2024-07-19

How to Cite

Rizinde, T., Ngaruye, I., & Cahill, N. D. (2024). Machine Learning Algorithms for Predicting Hospital Readmission and Mortality Rates in Patients with Heart Failure. AFRICAN JOURNAL OF APPLIED RESEARCH, 10(1), 316–338. https://doi.org/10.26437/ajar.v10i1.695