Investigating The Biochemical Methane Potential of Kumasi's Municipal Solid Wastes

Authors

  • J. Darmey Kumasi Technical University, Kumasi, Ghana
  • S. Narra University of Rostock, Rostock, Germany
  • O-W. Achaw Kumasi Technical University, Kumasi, Ghana
  • N. K. Amoatey Kumasi Technical University, Kumasi, Ghana
  • K. E. Tabbicca Kumasi Technical University, Kumasi, Ghana
  • J. C. Ahiekpor Kumasi Technical University, Kumasi, Ghana

DOI:

https://doi.org/10.26437/ajar.v11i1.824

Keywords:

Anaerobic digestion. biochemical. kinetic models. methane. solid wastes

Abstract

Purpose: This paper aims to ascertain the biochemical methane potential of organic waste generated in Kumasi for renewable energy production.

Design/Methodology/Approach: A quantitative experimental approach was employed on Batch anaerobic digestion experiments, and methane yields were analysed with kinetic models.

Findings: The modified Gompertz model had the best fit, with a R² = 0.9962, which gave a methane production rate of 19.47 ml CH₄ g⁻¹ VS Day and a BMP of 219.35 ml CH₄ g⁻¹ VS.

Research Limitation: It has also been pointed out that further optimisation of AD processes for methane yield and efficiency is required. Key limitations pertain to scalability and unoptimised parameters.

Practical Implication: The study confirms that organic waste-to-biogas conversion in Kumasi is viable and represents a partial solution to problems of organic waste management and renewable energy generation.  That will reduce disposal costs from waste, low dependence on fossil fuel, and open opportunities in resource recovery for operational efficiencies that work toward environmental sustainability.

Social Implication: Better waste management will help reduce environmental pollution. In addition, appropriate development in terms of sustainability and enhancement of energy security will occur.

Originality/Value: This research provides information on wastes around Kumasi that can be used to produce biogas and advance sustainable waste-to-energy practices. This study introduces a novel application of kinetic models to assess Kumasi’s organic waste for biogas production, offering localised data and tailored optimisation strategies. It contributes to advancing waste-to-energy practices and supports sustainable waste management in Ghana.

Author Biographies

J. Darmey, Kumasi Technical University, Kumasi, Ghana

Ing. James Darmey is a Lecturer at the  Department of Chemical Engineering, Kumasi Technical University, Kumasi, Ghana

S. Narra, University of Rostock, Rostock, Germany

Prof. Satyanarayana Narra is a Professor at the  Department of Waste and Resource Management, University of Rostock, 18059 Rostock, Germany.

O-W. Achaw, Kumasi Technical University, Kumasi, Ghana

Prof. Osei-Wusu Achaw is an Associate Professor at the Department of Chemical Engineering, Kumasi Technical University, Kumasi P.O. Box 854, Ghana

N. K. Amoatey, Kumasi Technical University, Kumasi, Ghana

Nene Kwabla Amoatey is a Lecturer at the  Department of Chemical Engineering, Kumasi Technical University, Kumasi P.O. Box 854, Ghana

K. E. Tabbicca, Kumasi Technical University, Kumasi, Ghana

Kwame Effrim Tabbicca Lecturer- Department of Chemical Engineering, Kumasi Technical University, Kumasi P.O. Box 854, Ghana

J. C. Ahiekpor, Kumasi Technical University, Kumasi, Ghana

Prof. Julius Cudjoe Ahiekpor is an Associate Professor at the Department of Chemical Engineering, Kumasi Technical University, Kumasi P.O. Box 854, Ghana

References

Abubakar, I. R., Maniruzzaman, K. M., Dano, U. L., AlShihri, F. S., AlShammari, M. S.,

Ahmed, S. M. S., ... & Alrawaf, T. I. (2022). Environmental sustainability impacts of solid waste management practices in the global South. International journal of environmental research and public health, 19(19), 12717.

Achinas, S., & Euverink, G. J. W. (2019). Effect of combined inoculation on biogas production

from hardly degradable material. Energies, 12(2), 217.

Addae, G., Oduro-Kwarteng, S., Fei-Baffoe, B., Rockson, M. A. D., Ribeiro, J. X. F., & Antwi,

E. (2021). Market waste composition analysis and resource recovery potential in Kumasi, Ghana. Journal of the Air & Waste Management Association, 71(12), 1529-1544.

Aworanti, O. A., Agbede, O. O., Agarry, S. E., Ajani, A. O., Ogunkunle, O., Laseinde, O. T.,

... & Fattah, I. M. R. (2023). Decoding anaerobic digestion: a holistic analysis of biomass waste technology, process kinetics, and operational variables. Energies, 16(8), 3378.

Cheng, J. J. (2017). Anaerobic digestion for biogas production. In Biomass to renewable energy

processes (pp. 143-194). CRC Press.

Calise, F., Cappiello, F. L., Cimmino, L., d’Accadia, M. D., & Vicidomini, M. (2021). A review

of the state of the art of biomethane production: recent advancements and integration of renewable energies. Energies, 14(16), 4895.

Darmey, J., Ahiekpor, J. C., Achaw, O. W., Narra, S., & Mensah, I. (2023a). Bioenergy:

Physicochemical Properties and Energy Potential of Selected Wastes in Kumasi, Ghana. In Proceedings of the 38th International Conference on Advances in “Chemical, Biological and Environmental Sciences”, Porto, Portugal (Vol. 16).

Darmey, J., Ahiekpor, J. C., Narra, S., Achaw, O. W., & Ansah, H. F. (2023b). Municipal Solid

Waste Generation Trend and Bioenergy Recovery Potential: A Review. Energies, 16(23), 7753.

Dhull, P., Kumar, S., Yadav, N., & Lohchab, R. K. (2024). A comprehensive review on

anaerobic digestion with focus on potential feedstocks, limitations associated and recent advances for biogas production. Environmental Science and Pollution Research, 1-36.

Fajobi, M. O., Lasode, O. A., Adeleke, A. A., Ikubanni, P. P., & Balogun, A. O. (2022).

Investigation of physicochemical characteristics of selected lignocellulose biomass. Scientific Reports, 12(1), 2918.

Hormenu, M. C. (2011). Municipal Organic Waste Composting as Management Option for

Urban Agriculture: A case of Accra Metropolis, Ghana.

Huang, B. C., Li, W. W., Wang, X., Lu, Y., & Yu, H. Q. (2019). Customizing anaerobic

digestion-coupled processes for energy-positive and sustainable treatment of municipal wastewater. Renewable and Sustainable Energy Reviews, 110, 132-142.

Hansen, B. D., Tamouk, J., Tidmarsh, C. A., Johansen, R., Moeslund, T. B., Jensen, D.G.

(2020). Prediction of the Methane Production in Biogas Plants Using a Combined Gompertz and Machine Learning Model. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science, vol 12249. Springer, Cham. https://doi.org/10.1007/978-3-030-58799-4_53

Iglesias, R., Muñoz, R., Polanco, M., Díaz, I., Susmozas, A., Moreno, A. D., ... & Ballesteros,

M. (2021). Biogas from anaerobic digestion as an energy vector: Current upgrading development. Energies, 14(10), 2742.

Jingura, R. M., & Kamusoko, R. (2017). Methods for determination of biomethane potential of

feedstocks: a review. Biofuel Research Journal, 4(2), 573-586.

Kafle, G. K., & Chen, L. (2016). Comparison on batch anaerobic digestion of five different

livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste management, 48, 492-502

Kalyani, K. A., & Pandey, K. K. (2014). Waste to energy status in India: A short

review. Renewable and sustainable energy reviews, 31, 113-120.

Kwakye, S. O., Amuah, E. E. Y., Ankoma, K. A., Agyemang, E. B., & Owusu, B. G. (2024).

Understanding the performance and challenges of solid waste management in an emerging megacity: Insights from the developing world. Environmental Challenges, 14, 100805.

Lukashevych, Y., Evdokimov, V., Polukhin, A., Maksymova, I., & Tsvilii, D. (2024).

Innovation In The Energy Sector: The Transition To Renewable Sources As A Strategic Step Towards Sustainable Development. African Journal of Applied Research, 10(1), 43-56.

Maurus, K., Kremmeter, N., Ahmed, S., & Kazda, M. (2021). High-resolution monitoring of

VFA dynamics reveals process failure and exponential decrease of biogas production. Biomass Conversion and Biorefinery, 1-11.

Nielfa, A., Cano, R., Vinot, M., Fernández, E., & Fdz-Polanco, M. (2015). Anaerobic digestion

modeling of the main components of organic fraction of municipal solid waste. Process Safety and Environmental Protection, 94, 180-187.

Obuobi, B., Adu-Gyamfi, G., Adjei, M., & Nketiah, E. (2022). Technologies potential and

economic viability analysis of deriving electricity from Municipal Solid Waste in Kumasi, Ghana. Energy for Sustainable Development, 68, 318-331

Odega, C. A., Ayodele, O. O., Alagbe, O. A., Adewole, A. O., & Adekunle, A. E. (2022).

Review of anaerobic digestion process for biogas production. The Bioscientist Journal, 10(1), 81-96

Owens, J. M., & Chynoweth, D. P. (1993). Biochemical methane potential of municipal solid

waste (MSW) components. Water Science and Technology, 27(2), 1-14.

Owhondah, R. O., Walker, M., Ma, L., Nimmo, B., Ingham, D. B., Poggio, D., &

Pourkashanian, M. (2016). Assessment and parameter identification of simplified models to describe the kinetics of semi-continuous biomethane production from anaerobic digestion of green and food waste. Bioprocess and biosystems engineering, 39, 977-992

Owusu-Nimo, F., Agbefu, B. D., & Oduro-Kwarteng, S. (2023). Resource recovery potential

of the Kumasi landfill waste. Journal of the Ghana Institution of Engineering, 23(3), 1-7.

Owusu-Sekyere, E. (2018). Re-thinking landfills as asset: empirical evidence from Urban

Ghana. Nova Science Publishers, Inc.

Platošová, D., Rusín, J., Platoš, J., Smutná, K., & Buryjan, R. (2021). Case Study of Anaerobic

Digestion Process Stability Detected by Dissolved Hydrogen Concentration. Processes 2021, 9, 106.

Sarfo-Mensah, P., Obeng-Okrah, K., Arhin, A. A., Amaning, T. K., & Oblitei, R. T. (2019).

Solid waste management in urban communities in Ghana: A case study of the Kumasi metropolis. African Journal of Environmental Science and Technology, 13(9), 342-353.

Sharma, B., Vaish, B., Monika, Singh, U. K., Singh, P., & Singh, R. P. (2019). Recycling of

organic wastes in agriculture: an environmental perspective. International journal of environmental research, 13, 409-429.

Shrestha, S., Pandey, R., Aryal, N., & Lohani, S. P. (2023). Recent advances in co-digestion

conjugates for anaerobic digestion of food waste. Journal of Environmental Management, 345, 118785.

Stazi, V., & Tomei, M. C. (2021). Dissolved methane in anaerobic effluents: A review on

sustainable strategies for optimization of energy recovery or internal process reuse. Journal of Cleaner Production, 317, 128359.

Subbarao, P. M., D’Silva, T. C., Adlak, K., Kumar, S., Chandra, R., & Vijay, V. K. (2023).

Anaerobic digestion as a sustainable technology for efficiently utilizing biomass in the context of carbon neutrality and circular economy. Environmental Research, 234, 116286.

Tahiru, A. W., Cobbina, S. J., & Asare, W. (2024). Evaluation of energy potential of MSW in

the tamale metropolis, Ghana: An assessment of solid waste characteristics and energy content. Journal of the Air & Waste Management Association, 74(9), 639-663.

Tshemese, Z., Deenadayalu, N., Linganiso, L. Z., & Chetty, M. (2023). An Overview of Biogas

Production from Anaerobic Digestion and the Possibility of Using Sugarcane Wastewater and Municipal Solid Waste in a South African Context. Applied System Innovation, 6(1), 13.

Zhang, H., An, D., Cao, Y., Tian, Y., & He, J. (2021). Modeling the Methane Production

Kinetics of Anaerobic Co-Digestion of Agricultural Wastes Using Sigmoidal Functions. Energies, 14(2), 258.

Downloads

Published

2025-01-01

How to Cite

Darmey, J., Narra, S., Achaw, O.-W., Amoatey, N. K., Tabbicca, K. E., & Ahiekpor, J. C. (2025). Investigating The Biochemical Methane Potential of Kumasi’s Municipal Solid Wastes. AFRICAN JOURNAL OF APPLIED RESEARCH, 11(1), 34–50. https://doi.org/10.26437/ajar.v11i1.824