A Cutting-Edge Approach to Predictive Precision in Oncology Using a Geneto-Neuro-Fuzzy Hybrid Model

Authors

  • D. Oghorodi Delta State University of Science and Technology, Ozoro, Nigeria
  • E. J. Atajeromavwo
  • A. E. Okpako University of Delta, Agbor, Nigeria
  • G. Ekruyota Delta State University of Science and Technology, Ozoro, Nigeria
  • N. B. Chinedu Delta State University of Science and Technology, Ozoro, Nigeria
  • S. Ohwo Delta State Polytechnic, Ogwashi-Uku, Delta State, Nigeria
  • J. I. Opuh Delta State University of Science and Technology, Ozoro, Nigeria
  • G. O. Osakwe Delta State University of Science and Technology, Ozoro, Nigeria
  • W. Nwankwo Delta State University of Science and Technology, Ozoro, Nigeria

DOI:

https://doi.org/10.26437/ajar.v11i1.880

Keywords:

Diagnoses. fuzzy logic. genetic algorithm. neural network. prostate cancer

Abstract

Purpose: This study introduces a pioneering hybrid model that combines genetic algorithms, neuro-fuzzy logic, and mobile agent technology to enhance predictive precision for early-stage prostate cancer diagnosis.

Design/Methodology/Approach: One hundred and twenty records of prostate cancer patients were initially collected from the Delta State University Teaching Hospital, Oghara, Nigeria. Each patient’s record included relevant data on prostate disease, such as age, PSA levels, clinical history, symptom severity, biopsy results, and other demographic and clinical factors. This data was extracted and stored as rules in a MySQL database, with the MySQL Fuzzy Extension enabling fuzzy data storage and processing.

Findings: Extensive simulations and clinical data analyses demonstrate the model’s superior sensitivity and specificity in detecting early-stage prostate cancer compared to traditional diagnostic methods. Medical expert evaluations validate the model’s effectiveness as a promising diagnostic alternative.

Research Limitation: While results are promising, the study is limited to simulations and a controlled clinical dataset.

Practical Implications: The system offers a practical, scalable early prostate cancer detection solution that could revolutionise current diagnostic practices.

Social Implications: Potential social benefits include improved patient outcomes, reduced healthcare costs, and better quality of life.

Originality/Value: This study presents an innovative integration of genetic algorithms, neuro-fuzzy systems, and mobile agent technology. This novel approach paves the way for advanced cancer diagnostics and precision medicine.

Author Biographies

D. Oghorodi, Delta State University of Science and Technology, Ozoro, Nigeria

Dr. Duke Oghorodi  is a Senior Lecturer at the Deparment of Computer Science, Delta State University of Science and Technology, Ozoro, Nigeria.

E. J. Atajeromavwo

Dr. Edafe John Atajeromavwo is a Senior Lecturer at the Deparment of Software Engineering, Delta State University of Science and Technology, Ozoro, Nigeria.

A. E. Okpako, University of Delta, Agbor, Nigeria

Dr. Ejaita Abugor Okpako is a Senior Lecturer at the  Deparment of Cyber Security, University of Delta, Agbor, Nigeria.

G. Ekruyota, Delta State University of Science and Technology, Ozoro, Nigeria

Godwin Ekruyota is a Lecturer at the Deparment of Computer Science, Delta State University of Science and Technology, Ozoro, Nigeria.

N. B. Chinedu, Delta State University of Science and Technology, Ozoro, Nigeria

Dr. Nkechi Blessing Chinedu is a Senior Lecturer at the Department of Biochemistry, Delta State University of Science and Technology, Ozoro, Nigeria.

S. Ohwo, Delta State Polytechnic, Ogwashi-Uku, Delta State, Nigeria

Dr. Stephen Ohwo is a Chief Lecturer Department of Computer Science, Delta State Polytechnic, Ogwashi-Uku, Delta State, Nigeria.

J. I. Opuh, Delta State University of Science and Technology, Ozoro, Nigeria

Jude Iwedike Opuh is a Lecturer at the Deparment of Computer Science, Delta State University of Science and Technology, Ozoro, Nigeria.

G. O. Osakwe, Delta State University of Science and Technology, Ozoro, Nigeria

Dr. Godwinn Ohumaehuni Osakwe is a Lecturer at the Deparment of Cyber Security, Delta State University of Science and Technology, Ozoro, Nigeria.

W. Nwankwo, Delta State University of Science and Technology, Ozoro, Nigeria

Prof. Wilson Nwankwo is a Professor at the Deparment of Cyber Security, Delta State University of Science and Technology, Ozoro, Nigeria.

References

Acheme, D., Olayinka, A. S., Jegede, A., Uddin, O. O., Nwankwo, W., & Vincent, O. (2023).

Investigating the most influential factors for customer satisfaction in online stores. In 2023 2nd International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS) (pp. 1-4). Abuja, Nigeria. https://doi.org/10.1109/ICMEAS58693.2023.10379329

Acheme, D. I., Makinde,A. S., Osemengbe, U.& Nwankwo, W. (2020). An Intelligent Agent-

Based Stock Market Decision Support System Using Fuzzy Logic. The IUP Journal of Information Technology, 16(4),1-20.

Adetunji, C. O., Nwankwo, W., Olayinka, A. S., Olaniyan, O. T., Akram, M., Laila, U.,

Olugbenga, M. S., Oshinjo, A. M., Adetunji, J. B., Okotie, G. E., & Esiobu, N. (2022). Machine learning and behaviour modification for COVID-19. In H. M. Inuwa, I. M. Ezeonu, C. O. Adetunji, E. O. Ekundayo, A. Gidado, A. B. Ibrahim, & B. E. Ubi (Eds.), Medical biotechnology, biopharmaceutics, forensic science and bioinformatics (pp. 271-287). Taylor & Francis. https://doi.org/10.1201/9781003178903

Aerts, H. J. W. L., Velazquez, E. R., Leijenaar, R. T. H., Parmar, C., Grossmann, P., Carvalho,

S., & Lambin, P. (2014). Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature Communications, 5(1), 4006. doi:10.1038/ncomms5006

Akinrotimi A. O., & Oladele R. O. (2018). Modeling and Diagnosis of Typhoid Fever Using a

Fuzzy Logic Controlled Inference System. Journal of Computer Science and Control Systems (JCSCS), 1(11): 5-8

Albright, F., Gandolfi, B., & He, Y. (2020). The socio-economic benefits of early cancer

detection. Journal of Cancer Epidemiology, 6(2), 56-64. https://doi.org/10.1155/2020/9013456

Alayón S., Robertson R., Warfield S.K. & Ruiz-Alzola J. (2007). A Fuzzy System for Helping

Medical Diagnosis of Malformations of Cortical Development, Journal of biomedical informatics, 40, 221-235

American Cancer Society (2022) Key Statistics for Prostate Cancer.

https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html

Bali, B., & Garba, E. J. (2021). Neuro-fuzzy approach for prediction of neurological

disorders: A systematic review. SN Computer Science, 2(307). https://doi.org/10.1007/s42979-021-00710-9

Barry, M. J. (2001) Clinical practice. Prostate-specific-antigen testing for early diagnosis of

prostate cancer. New England Journal of Medicine; 344(18):1373–137

Belinda O. E. & Emadomi M. I. (2015). Fuzzy Logic Based Approach to Early Diagnosis of

Ebola Hemorrhagic Fever. ‘Proceedings of the World Congress on Engineering and Computer Science 2015’ Vol II WCECS 2015, October 21-23, 2015, San Francisco, USA

Cattelani, C., & Fortino, G. (2023). Dual-stage optimization in biomarker selection using

multi-objective genetic algorithms: Addressing overfitting in cancer prediction. Retrieved from https://arxiv.org/abs/2312.16624

Cecilia, V. & Fabio, K. (2011). Intelligent and Expert Systems in Medicine -A Review. XVIII

Congreso Argentino de Bioingeniería SABI 2011 - VII Jornadas de Ingeniería Clínica Mar del Plata Sara.

Chinedu, P.U., Nwankwo, W., Masajuwa, F.U. & Imoisi, S. (2021). Cybercrime Detection and

Prevention Efforts in the Last Decade: An Overview of the Possibilities of Machine Learning Models. Review of International Geographical Education (RIGEO), 11(7), 956-974. Doi: 10.48047/rigeo.11.07.92

Deng, Y., Xu, J., & Wang, X. (2021). Hybrid gene selection for cancer classification:

Combining XGBoost with multi-objective genetic algorithms. Retrieved from https://arxiv.org/abs/2106.05841

Dey, P., Lamba, A., Kumari, S., & Marwaha, N. ( 2012). Application of an Artificial Neural

Network in the Prognosis of Chronic Myeloid Leukemia. https://pubmed.ncbi.nlm.nih.gov/22590811/

Duodu, Q., Panford , J. K. & Hafron-Acquah, J. B. (2014). Designing Algorithm for Malaria

Diagnosis using Fuzzy Logic for Treatment (AMDFLT) in Ghana. https://ir.knust.edu.gh/handle/123456789/9368

Egba. A. F. & Okonkwo, O. R. (2020). Artificial Neural Networks for Medical Diagnosis: A

review of Recent Trends. Internal Journal of Computer science and Engineering Survey,3(11),1-11

Ekholuenetale M. (2016). Application of Fuzzy Logic in the Detection of Eating Disorder.

IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT). 8(10), 87-98

Emokhare, B. O. & Igbape, E. M. (2015). Fuzzy Logic Based Approach to Early Diagnosis of

Ebola Hemorrhagic https://www.iaeng.org/publication/WCECS2015/WCECS2015_pp754-759.pdf

Fatiregun, O. A. , Popoola, A., Bakare, O. , Ayeni, S., Oyerinde, A. , Sowunmi, A. C., Salako

O., Alabi, A. , & Adedayo, J. (2020 ). 10-Year Mortality Pattern Among Cancer Patients in Lagos State University Teaching Hospital, Ikeja, Lagos. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735062/

Ferlay, J., Ervik, M., Lam, F., Laversanne, M., Colombet, M., Mery, L., Piñeros, M., Znaor,

A., Soerjomataram, I. & Bray, F. (2024). Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. Available from: https://gco.iarc.who.int/today.

Gasser, U. & Almeida V.A.F. (2017). A layered model for AI governance. IEEE Internet

Computing, 21,58– 62.

Gupta, D. (2022). Knowledge Management. https://whatfix.com/blog/types-of-knowledge/

Herrera F., Lozano, M., & Verdegay, J. L. (2000). Genetic Algorithms Applications to Fuzzy

Logic Based Systems.

https://www.researchgate.net/publication/2817025_Genetic_Algorithms_Applications_to _Fuzzy_Logic_Based_Systems

Ishioka J., Matsuoka Y., Uehara S., Yasuda Y., Kijima, T., Yoshida S., Yokoyama M., Saito,

K., Kihara, K, Numao N., Kimura T., Kudo K., Kumazawa, I., & Fujii Y., (2018). ‘Computer-aided diagnosis of prostate cancer on magnetic resonance imaging using a convolutional neural network algorithm’. BJU International, 122(3),411–417.

Jameela A. A., Abdul R. A., Loay E. G. & Sherna A. (2013). Review of Artificial Intelligence

International Journal of Science and Research (IJSR), India. 2(2), 487-502

Jang, J.-S. R. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE

Transactions on Systems, Man, and Cybernetics, 23(3), 665–685. https://doi.org/10.1109/21.256541

Jedy-Agba, E., Curado, M. P., Ogunbiyi, O., Oga, E., Fabowale, T., Igbinoba, F., ... &

Adebamowo, C. A. (2012). Cancer incidence in Nigeria: a report from population-based cancer registries. Cancer epidemiology, 36(5), e271-e278.

Jones, D., Friend,C., Dreher, A., Allgar, V. & Macleod, U.(2018). The diagnostic test accuracy

of rectal examination for prostate cancer diagnosis in symptomatic patients: a systematic review. BMC Fam Pract. 19(1),79. doi: 10.1186/s12875-018-0765-y.

Khalid A. M. & Eltahir M. H. (2016). Malaria Parasite Diagnosis using Fuzzy Logic.

International Journal of Science and Research (IJSR). 5(6): 807-809

Komal B & Rupali S. K. (2020). Application of Fuzzy Logic: A Review. International

Research. Journal of Engineering and Technology (IRJET),4(7), 2097- 2100

Morgan O. O, Eke B. O. & Asagba P. (2018). An Improved Asynchronous Tuberculosis

Diagnosis System using Fuzzy Logic Mining Techniques. https://ijcttjournal.org/2018/Volume59/number-1/IJCTT-V59P104.pdf

Nwankwo,W. & Ukhurebor, K.E.(2021b). Big Data Analytics: A Single Window IoT-enabled

Climate Variability System for all-year-round Vegetable Cultivation. IOP Conference Series: Earth and Environmental Science, 655 012030. doi:10.1088/1755-1315/655/1/012030

Nwankwo, W. & Ukhurebor, K. E. (2021a). Nanoinformatics: Challenges and Opportunities

in the Development and Delivery of Healthcare Products in Developing Countries. IOP Conference Series: Earth and Environmental Science, 655 012018. doi:10.1088/1755-1315/655/1/012018

Nwankwo, W., Ukhurebor, K. E. & Ukaoha, K. C. (2020). Knowledge Discovery and Analytics

in Process Re-engineering: A Study of Port Clearance Processes. 2020 International Conference in Mathematics, Computer Engineering and Computer Science (ICMCECS), IEEE Explore, pp. 1-7. doi: 10.1109/ICMCECS47690.2020.246989.

Nwankwo, W., Ukaoha, K., Osika,A. N., Nwankwo, C. P., Oghorodi, D., Adigwe, W., Ojei,

E., Irikefe,F.E. & Ovili,H.P.(2023b). Management of Misinformation in Critical Healthcare using Machine Learning Models. The IUP Journal of Knowledge Management,21(4), 24-47

Nwankwo, W. (2018). Interactive Advising with Bots: Improving Academic Excellence in

Educational Establishments. American Journal of Operations Management and Information Systems, 3(1), 6-21. doi: 10.11648/j.ajomis.20180301.12.

Nwankwo, W. N., & Chinecherem, U. (2018). An object-based analysis of an informatics

model for Zika virus detection in adults.

Nwankwo, W. (2017). Harnessing E-healthcare Technologies for Equitable Healthcare

Delivery in Nigeria: The Way Forward. International Journal of Science and Research, 6(3).

Nwankwo, W. (2016). Evolving Effective Healthcare System through Public Private

Partnership, International Journal of Engineering Research and Technology, 5(12).

Nwankwo, W., Adigwe,W., Umezuruike, C., Acheme, D.I., Nwankwo,C.P., Ojei, E. &

Oghorodi,D.(2023a). Application of Support Vector Machine to Lassa Fever Diagnosis. In: Hu, Z., Zhang, Q., He, M. (eds) Advances in Artificial Systems for Logistics Engineering III. ICAILE 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 180. Springer, Cham. https://doi.org/10.1007/978-3-031-36115-9_16

Nwankwo, W. & Olayinka, A.S. (2019). Towards the Management of B2C and B2B E-

Commerce Transaction Failures through Bot-mediated Component. Transactions of Nigerian Association of Mathematical Physics, 9,41-48.

Nwankwo, W., Chinedu,P. U., Daniel, A., Shaba, S.M., Momoh, O.M., Nwankwo, C. P.,

Adigwe, W., Oghorodo,D. & Uwadia,F.(2023c). Educational FinTech: Promoting Stakeholder Confidence Through Automatic Incidence Resolution. In: Hu, Z., Wang, Y., He, M. (eds) Advances in Intelligent Systems, Computer Science and Digital Economics IV. CSDEIS 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 158. Springer, Cham. https://doi.org/10.1007/978-3-031-24475-9_78

Nwankwo, W., Chinedu, U. P., Aliu, D., Saliu, M. S., Momoh, O. M., Nwankwo,C. P. &

Adigwe W. (2022). Integrated FinTech Solutions in Learning Environments in the Post-COVID-19 Era. IUP Journal of Knowledge Management, 20(3),1–22.

Nwankwo, W., Adetunji,C.O., Ukhurebor,K.E., Acheme, I. D., Makinde,S.,Nwankwo,C.P. &

Umezuruike,C. (2023d). Sector-Independent Integrated System Architecture for Profiling Hazardous Industrial Wastes. In: Hu, Z., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education VI. ICCSEEA 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 181. Springer, Cham. https://doi.org/10.1007/978-3-031-36118-0_65

Ogunbiyi, J. O. & Shittu, O. B. (1999). Increased incidence of prostate cancer in Nigerians.

Journal of National Medical Association 91(3), 159–164.

Ojulari F. (4 November 2019). Prostate Cancer in Nigeria: The way forward. The Vanguard,

https://www.vanguardngr.com/2019/11/prostate-cancer-in-nigeria-the-way-forward

Olayinka, A.S.,Nwankwo, W., Aribisala, O. A., & Ogbiti, J. T.(2018). A Fuzzy Website

Quality Assurance System, Software Engineering, 6(3), 98-109

Olayinka A.S., Adetunji C.O., Nwankwo W., Olugbemi O.T.& Olayinka T.C. (2022) A

Study on the Application of Bayesian Learning and Decision Trees IoT-Enabled System in Postharvest Storage. In: Pal S., De D., Buyya R. (eds) Artificial Intelligence-based Internet of Things Systems. Internet of Things (Technology, Communications and Computing). Springer, Cham. https://doi.org/10.1007/978-3-030-87059-1_18

Osikemekha A.A., Adetunji,C. O., Olaniyan T. O., Daniel, I. H., Nwankwo W. & Olayinka,

A. S.(2022). IoT- based monitoring system for freshwater fish farming: Analysis and design. In A. Abraham, S. Dash, J.J.P.C. Rodrigues, B. Acharya, S. K. Pani(Eds.), Intelligent Data-Centric Systems: AI, Edge and IoT-based Smart Agriculture(pp. 505-515), Academic Press. https://doi.org/10.1016/B978-0-12-823694-9.00026-8.

Omisore M.O, Oluwarotimi W. S. & Atajeromavwo E, J. (2017) A Genetic-Neuro-Fuzzy

inferential model for diagnosis of tuberculosis. Applied Computing and Informatics, 13 (1), 27-37

Park, H., & Lee, S. (2021). Molecular generative modeling: Integrating genetic algorithms

with tree search for anticancer drug discovery. Retrieved from https://arxiv.org/abs/2112.08959

Rumelhart, D. & J. McClelland (1986). Parallel Distributed Processing. MIT Press,

Cambridge, Mass.

Sakshi K., Surbhi M. & Rahul R. (2014). Basics of Artificial Neural Networks.

https://www.analyticsvidhya.com/blog/2021/07/understanding-the-basics-of

-artificial-neural-network-ann/

Samuel O.W., Omisore M.O. &Ojokoh B.A. (2013) A web based decision support system

driven by fuzzy logic for the diagnosis of typhoid fever. Expert Systems with Applications, 40(10): 4164–4171

Seddik, M., & Ahmed, M. (2021). Ovarian cancer detection using dimensionality reduction

and genetic algorithms. Retrieved from https://arxiv.org/abs/2105.01748

Sehrish W. & Zahoor A. (2011). Application of Fuzzy Logic in Academic Setup. Proceedings

of 8th International Conference on Recent Advances in Statistics.

Sharma, S, Sharma, S. & Athaiya, A. (2020). Activation Functions in Neural Networks.

International Journal of Engineering Applied Sciences and Technology, 12(4),310-316

Shukla S. S.1 and Jaiswal V. (2013) Applicability of Artificial Intelligence in Different Fields

of Life. https://www.ijser.in/archives/v1i1/MDExMzA5MTU=.pdf

Singh, H., Meyer, A. N. D., & Thomas, E. J. (2017). The impact of diagnostic errors on patient

outcomes. BMJ Quality & Safety, 26(7), 583-592. https://doi.org/10.1136/bmjqs-2016-005401

Surbhi S. (2018 ). Difference Between Information and Knowledge.

https://keydifferences.com/difference-between-information-and-knowledge.html

Techopedia (2017). Knowledge Base.

https://www.techopedia.com/definition/2511/knowledge-base-klog

Tuba F. & Saumya Y. (2019). Modified Clustering Algorithm for Energy Efficiency Utilizing

Fuzzy Logic in WSN. Proceedings of National Conference on Machine Learning, 26th March 2019

Usman, O.L. & Adenubi, A.O.(2013) Artificial Neural Network (ANN) Model for Predicting

Students’ Academic Performance. Journal of Science and Information Technology. 2(1):23-37

Umezuruike, C., Nwankwo, W., Tibenderana, P., Assimwe, J. P. & Muhirwa R. (2020).

Corona Virus Disease (COVID 19): Analysis and Design of an Alert and Real-time Tracking System. International Journal of Emerging Trends in Engineering Research, 8(5), 1743 – 1748

Umezurike, C., Nwankwo, W.& Kareyo, M.(2017a). Implementation Challenges of Health

Management Information Systems in Uganda: A Review, Journal of Multidisciplinary Engineering Science and Technology, 4(7).

Umezurike, C., Nwankwo, W., Okolie, S.O. & Adebayo, A. (2017b). Developing an

Informatics Model for Effective Healthcare in Military Health Facilities in Nigeria. World Journal of Engineering Research and Technology, 3(4).

Umezuruike, C., Nwankwo, W., Okolie, S.O., Adebayo,A.O., Jonah,J.V. & Ngugi,H.(2019).

Health Informatics System for Screening Arboviral Infections in Adults, International Journal of Information Technology and Computer Science (IJITCS), 11(3), 10-22. DOI: https://doi.org/10.5815/ijitcs.2019.03.02

Vasilis, B. (2020). Importance of Technology in Healthcare.

https://ied.eu/blog/importance-of-technology-in-healthcare/

Victor-Ikoh, M.I., Moko, A. & Nwankwo, W. (2022). Towards the Implementation of a Versatile Mobile Health Solutions for the Management of Immunization Against Infectious

Diseases in Nigeria. In: Salvendy, G., Wei, J. (eds) Design, Operation and Evaluation of Mobile Communications. HCII 2022. Lecture Notes in Computer Science, vol 13337. Springer, Cham. https://doi.org/10.1007/978-3-031-05014-5_7

WHO (2020) https://gco.iarc.fr/today/data/factsheets/populations/566-nigeria-fact-sheets.pdf

Waqas, A., Li, P., & Anwar, S. (2023). Multimodal data integration using deep learning for

cancer prediction: A systematic review. Journal of Biomedical Informatics, 135, 104117. doi:10.1016/j.jbi.2023.104117

Wong, H., & Park, Y. (2010). Applications of genetic algorithms in protein folding and cancer

research.

Yanyan, D., Jie, H., Ning ., & Maocong, Z., (2020). Research on How Human Intelligence,

Consciousness, and Cognitive Computing Affect the Development of Artificial Intelligence.

https://downloads.hindawi.com/journals/complexity/2020/1680845.pdf

Zadeh, L. A. (1994). Fuzzy logic, neural networks, and soft computing.

https://dl.acm.org/doi/pdf/10.1145/175247.175255

Downloads

Published

2025-01-16

How to Cite

Oghorodi, D. ., Atajeromavwo, E. . J. ., Okpako, A. E., Ekruyota, G. ., Chinedu, N. B. ., Ohwo, S. ., Opuh, J. I. ., Osakwe, G. O., & Nwankwo, W. (2025). A Cutting-Edge Approach to Predictive Precision in Oncology Using a Geneto-Neuro-Fuzzy Hybrid Model. AFRICAN JOURNAL OF APPLIED RESEARCH, 11(1), 766–785. https://doi.org/10.26437/ajar.v11i1.880