A Cutting-Edge Approach to Predictive Precision in Oncology Using a Geneto-Neuro-Fuzzy Hybrid Model
DOI:
https://doi.org/10.26437/ajar.v11i1.880Keywords:
Diagnoses. fuzzy logic. genetic algorithm. neural network. prostate cancerAbstract
Purpose: This study introduces a pioneering hybrid model that combines genetic algorithms, neuro-fuzzy logic, and mobile agent technology to enhance predictive precision for early-stage prostate cancer diagnosis.
Design/Methodology/Approach: One hundred and twenty records of prostate cancer patients were initially collected from the Delta State University Teaching Hospital, Oghara, Nigeria. Each patient’s record included relevant data on prostate disease, such as age, PSA levels, clinical history, symptom severity, biopsy results, and other demographic and clinical factors. This data was extracted and stored as rules in a MySQL database, with the MySQL Fuzzy Extension enabling fuzzy data storage and processing.
Findings: Extensive simulations and clinical data analyses demonstrate the model’s superior sensitivity and specificity in detecting early-stage prostate cancer compared to traditional diagnostic methods. Medical expert evaluations validate the model’s effectiveness as a promising diagnostic alternative.
Research Limitation: While results are promising, the study is limited to simulations and a controlled clinical dataset.
Practical Implications: The system offers a practical, scalable early prostate cancer detection solution that could revolutionise current diagnostic practices.
Social Implications: Potential social benefits include improved patient outcomes, reduced healthcare costs, and better quality of life.
Originality/Value: This study presents an innovative integration of genetic algorithms, neuro-fuzzy systems, and mobile agent technology. This novel approach paves the way for advanced cancer diagnostics and precision medicine.
References
Acheme, D., Olayinka, A. S., Jegede, A., Uddin, O. O., Nwankwo, W., & Vincent, O. (2023).
Investigating the most influential factors for customer satisfaction in online stores. In 2023 2nd International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS) (pp. 1-4). Abuja, Nigeria. https://doi.org/10.1109/ICMEAS58693.2023.10379329
Acheme, D. I., Makinde,A. S., Osemengbe, U.& Nwankwo, W. (2020). An Intelligent Agent-
Based Stock Market Decision Support System Using Fuzzy Logic. The IUP Journal of Information Technology, 16(4),1-20.
Adetunji, C. O., Nwankwo, W., Olayinka, A. S., Olaniyan, O. T., Akram, M., Laila, U.,
Olugbenga, M. S., Oshinjo, A. M., Adetunji, J. B., Okotie, G. E., & Esiobu, N. (2022). Machine learning and behaviour modification for COVID-19. In H. M. Inuwa, I. M. Ezeonu, C. O. Adetunji, E. O. Ekundayo, A. Gidado, A. B. Ibrahim, & B. E. Ubi (Eds.), Medical biotechnology, biopharmaceutics, forensic science and bioinformatics (pp. 271-287). Taylor & Francis. https://doi.org/10.1201/9781003178903
Aerts, H. J. W. L., Velazquez, E. R., Leijenaar, R. T. H., Parmar, C., Grossmann, P., Carvalho,
S., & Lambin, P. (2014). Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature Communications, 5(1), 4006. doi:10.1038/ncomms5006
Akinrotimi A. O., & Oladele R. O. (2018). Modeling and Diagnosis of Typhoid Fever Using a
Fuzzy Logic Controlled Inference System. Journal of Computer Science and Control Systems (JCSCS), 1(11): 5-8
Albright, F., Gandolfi, B., & He, Y. (2020). The socio-economic benefits of early cancer
detection. Journal of Cancer Epidemiology, 6(2), 56-64. https://doi.org/10.1155/2020/9013456
Alayón S., Robertson R., Warfield S.K. & Ruiz-Alzola J. (2007). A Fuzzy System for Helping
Medical Diagnosis of Malformations of Cortical Development, Journal of biomedical informatics, 40, 221-235
American Cancer Society (2022) Key Statistics for Prostate Cancer.
https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html
Bali, B., & Garba, E. J. (2021). Neuro-fuzzy approach for prediction of neurological
disorders: A systematic review. SN Computer Science, 2(307). https://doi.org/10.1007/s42979-021-00710-9
Barry, M. J. (2001) Clinical practice. Prostate-specific-antigen testing for early diagnosis of
prostate cancer. New England Journal of Medicine; 344(18):1373–137
Belinda O. E. & Emadomi M. I. (2015). Fuzzy Logic Based Approach to Early Diagnosis of
Ebola Hemorrhagic Fever. ‘Proceedings of the World Congress on Engineering and Computer Science 2015’ Vol II WCECS 2015, October 21-23, 2015, San Francisco, USA
Cattelani, C., & Fortino, G. (2023). Dual-stage optimization in biomarker selection using
multi-objective genetic algorithms: Addressing overfitting in cancer prediction. Retrieved from https://arxiv.org/abs/2312.16624
Cecilia, V. & Fabio, K. (2011). Intelligent and Expert Systems in Medicine -A Review. XVIII
Congreso Argentino de Bioingeniería SABI 2011 - VII Jornadas de Ingeniería Clínica Mar del Plata Sara.
Chinedu, P.U., Nwankwo, W., Masajuwa, F.U. & Imoisi, S. (2021). Cybercrime Detection and
Prevention Efforts in the Last Decade: An Overview of the Possibilities of Machine Learning Models. Review of International Geographical Education (RIGEO), 11(7), 956-974. Doi: 10.48047/rigeo.11.07.92
Deng, Y., Xu, J., & Wang, X. (2021). Hybrid gene selection for cancer classification:
Combining XGBoost with multi-objective genetic algorithms. Retrieved from https://arxiv.org/abs/2106.05841
Dey, P., Lamba, A., Kumari, S., & Marwaha, N. ( 2012). Application of an Artificial Neural
Network in the Prognosis of Chronic Myeloid Leukemia. https://pubmed.ncbi.nlm.nih.gov/22590811/
Duodu, Q., Panford , J. K. & Hafron-Acquah, J. B. (2014). Designing Algorithm for Malaria
Diagnosis using Fuzzy Logic for Treatment (AMDFLT) in Ghana. https://ir.knust.edu.gh/handle/123456789/9368
Egba. A. F. & Okonkwo, O. R. (2020). Artificial Neural Networks for Medical Diagnosis: A
review of Recent Trends. Internal Journal of Computer science and Engineering Survey,3(11),1-11
Ekholuenetale M. (2016). Application of Fuzzy Logic in the Detection of Eating Disorder.
IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT). 8(10), 87-98
Emokhare, B. O. & Igbape, E. M. (2015). Fuzzy Logic Based Approach to Early Diagnosis of
Ebola Hemorrhagic https://www.iaeng.org/publication/WCECS2015/WCECS2015_pp754-759.pdf
Fatiregun, O. A. , Popoola, A., Bakare, O. , Ayeni, S., Oyerinde, A. , Sowunmi, A. C., Salako
O., Alabi, A. , & Adedayo, J. (2020 ). 10-Year Mortality Pattern Among Cancer Patients in Lagos State University Teaching Hospital, Ikeja, Lagos. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735062/
Ferlay, J., Ervik, M., Lam, F., Laversanne, M., Colombet, M., Mery, L., Piñeros, M., Znaor,
A., Soerjomataram, I. & Bray, F. (2024). Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. Available from: https://gco.iarc.who.int/today.
Gasser, U. & Almeida V.A.F. (2017). A layered model for AI governance. IEEE Internet
Computing, 21,58– 62.
Gupta, D. (2022). Knowledge Management. https://whatfix.com/blog/types-of-knowledge/
Herrera F., Lozano, M., & Verdegay, J. L. (2000). Genetic Algorithms Applications to Fuzzy
Logic Based Systems.
https://www.researchgate.net/publication/2817025_Genetic_Algorithms_Applications_to _Fuzzy_Logic_Based_Systems
Ishioka J., Matsuoka Y., Uehara S., Yasuda Y., Kijima, T., Yoshida S., Yokoyama M., Saito,
K., Kihara, K, Numao N., Kimura T., Kudo K., Kumazawa, I., & Fujii Y., (2018). ‘Computer-aided diagnosis of prostate cancer on magnetic resonance imaging using a convolutional neural network algorithm’. BJU International, 122(3),411–417.
Jameela A. A., Abdul R. A., Loay E. G. & Sherna A. (2013). Review of Artificial Intelligence
International Journal of Science and Research (IJSR), India. 2(2), 487-502
Jang, J.-S. R. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE
Transactions on Systems, Man, and Cybernetics, 23(3), 665–685. https://doi.org/10.1109/21.256541
Jedy-Agba, E., Curado, M. P., Ogunbiyi, O., Oga, E., Fabowale, T., Igbinoba, F., ... &
Adebamowo, C. A. (2012). Cancer incidence in Nigeria: a report from population-based cancer registries. Cancer epidemiology, 36(5), e271-e278.
Jones, D., Friend,C., Dreher, A., Allgar, V. & Macleod, U.(2018). The diagnostic test accuracy
of rectal examination for prostate cancer diagnosis in symptomatic patients: a systematic review. BMC Fam Pract. 19(1),79. doi: 10.1186/s12875-018-0765-y.
Khalid A. M. & Eltahir M. H. (2016). Malaria Parasite Diagnosis using Fuzzy Logic.
International Journal of Science and Research (IJSR). 5(6): 807-809
Komal B & Rupali S. K. (2020). Application of Fuzzy Logic: A Review. International
Research. Journal of Engineering and Technology (IRJET),4(7), 2097- 2100
Morgan O. O, Eke B. O. & Asagba P. (2018). An Improved Asynchronous Tuberculosis
Diagnosis System using Fuzzy Logic Mining Techniques. https://ijcttjournal.org/2018/Volume59/number-1/IJCTT-V59P104.pdf
Nwankwo,W. & Ukhurebor, K.E.(2021b). Big Data Analytics: A Single Window IoT-enabled
Climate Variability System for all-year-round Vegetable Cultivation. IOP Conference Series: Earth and Environmental Science, 655 012030. doi:10.1088/1755-1315/655/1/012030
Nwankwo, W. & Ukhurebor, K. E. (2021a). Nanoinformatics: Challenges and Opportunities
in the Development and Delivery of Healthcare Products in Developing Countries. IOP Conference Series: Earth and Environmental Science, 655 012018. doi:10.1088/1755-1315/655/1/012018
Nwankwo, W., Ukhurebor, K. E. & Ukaoha, K. C. (2020). Knowledge Discovery and Analytics
in Process Re-engineering: A Study of Port Clearance Processes. 2020 International Conference in Mathematics, Computer Engineering and Computer Science (ICMCECS), IEEE Explore, pp. 1-7. doi: 10.1109/ICMCECS47690.2020.246989.
Nwankwo, W., Ukaoha, K., Osika,A. N., Nwankwo, C. P., Oghorodi, D., Adigwe, W., Ojei,
E., Irikefe,F.E. & Ovili,H.P.(2023b). Management of Misinformation in Critical Healthcare using Machine Learning Models. The IUP Journal of Knowledge Management,21(4), 24-47
Nwankwo, W. (2018). Interactive Advising with Bots: Improving Academic Excellence in
Educational Establishments. American Journal of Operations Management and Information Systems, 3(1), 6-21. doi: 10.11648/j.ajomis.20180301.12.
Nwankwo, W. N., & Chinecherem, U. (2018). An object-based analysis of an informatics
model for Zika virus detection in adults.
Nwankwo, W. (2017). Harnessing E-healthcare Technologies for Equitable Healthcare
Delivery in Nigeria: The Way Forward. International Journal of Science and Research, 6(3).
Nwankwo, W. (2016). Evolving Effective Healthcare System through Public Private
Partnership, International Journal of Engineering Research and Technology, 5(12).
Nwankwo, W., Adigwe,W., Umezuruike, C., Acheme, D.I., Nwankwo,C.P., Ojei, E. &
Oghorodi,D.(2023a). Application of Support Vector Machine to Lassa Fever Diagnosis. In: Hu, Z., Zhang, Q., He, M. (eds) Advances in Artificial Systems for Logistics Engineering III. ICAILE 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 180. Springer, Cham. https://doi.org/10.1007/978-3-031-36115-9_16
Nwankwo, W. & Olayinka, A.S. (2019). Towards the Management of B2C and B2B E-
Commerce Transaction Failures through Bot-mediated Component. Transactions of Nigerian Association of Mathematical Physics, 9,41-48.
Nwankwo, W., Chinedu,P. U., Daniel, A., Shaba, S.M., Momoh, O.M., Nwankwo, C. P.,
Adigwe, W., Oghorodo,D. & Uwadia,F.(2023c). Educational FinTech: Promoting Stakeholder Confidence Through Automatic Incidence Resolution. In: Hu, Z., Wang, Y., He, M. (eds) Advances in Intelligent Systems, Computer Science and Digital Economics IV. CSDEIS 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 158. Springer, Cham. https://doi.org/10.1007/978-3-031-24475-9_78
Nwankwo, W., Chinedu, U. P., Aliu, D., Saliu, M. S., Momoh, O. M., Nwankwo,C. P. &
Adigwe W. (2022). Integrated FinTech Solutions in Learning Environments in the Post-COVID-19 Era. IUP Journal of Knowledge Management, 20(3),1–22.
Nwankwo, W., Adetunji,C.O., Ukhurebor,K.E., Acheme, I. D., Makinde,S.,Nwankwo,C.P. &
Umezuruike,C. (2023d). Sector-Independent Integrated System Architecture for Profiling Hazardous Industrial Wastes. In: Hu, Z., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education VI. ICCSEEA 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 181. Springer, Cham. https://doi.org/10.1007/978-3-031-36118-0_65
Ogunbiyi, J. O. & Shittu, O. B. (1999). Increased incidence of prostate cancer in Nigerians.
Journal of National Medical Association 91(3), 159–164.
Ojulari F. (4 November 2019). Prostate Cancer in Nigeria: The way forward. The Vanguard,
https://www.vanguardngr.com/2019/11/prostate-cancer-in-nigeria-the-way-forward
Olayinka, A.S.,Nwankwo, W., Aribisala, O. A., & Ogbiti, J. T.(2018). A Fuzzy Website
Quality Assurance System, Software Engineering, 6(3), 98-109
Olayinka A.S., Adetunji C.O., Nwankwo W., Olugbemi O.T.& Olayinka T.C. (2022) A
Study on the Application of Bayesian Learning and Decision Trees IoT-Enabled System in Postharvest Storage. In: Pal S., De D., Buyya R. (eds) Artificial Intelligence-based Internet of Things Systems. Internet of Things (Technology, Communications and Computing). Springer, Cham. https://doi.org/10.1007/978-3-030-87059-1_18
Osikemekha A.A., Adetunji,C. O., Olaniyan T. O., Daniel, I. H., Nwankwo W. & Olayinka,
A. S.(2022). IoT- based monitoring system for freshwater fish farming: Analysis and design. In A. Abraham, S. Dash, J.J.P.C. Rodrigues, B. Acharya, S. K. Pani(Eds.), Intelligent Data-Centric Systems: AI, Edge and IoT-based Smart Agriculture(pp. 505-515), Academic Press. https://doi.org/10.1016/B978-0-12-823694-9.00026-8.
Omisore M.O, Oluwarotimi W. S. & Atajeromavwo E, J. (2017) A Genetic-Neuro-Fuzzy
inferential model for diagnosis of tuberculosis. Applied Computing and Informatics, 13 (1), 27-37
Park, H., & Lee, S. (2021). Molecular generative modeling: Integrating genetic algorithms
with tree search for anticancer drug discovery. Retrieved from https://arxiv.org/abs/2112.08959
Rumelhart, D. & J. McClelland (1986). Parallel Distributed Processing. MIT Press,
Cambridge, Mass.
Sakshi K., Surbhi M. & Rahul R. (2014). Basics of Artificial Neural Networks.
https://www.analyticsvidhya.com/blog/2021/07/understanding-the-basics-of
-artificial-neural-network-ann/
Samuel O.W., Omisore M.O. &Ojokoh B.A. (2013) A web based decision support system
driven by fuzzy logic for the diagnosis of typhoid fever. Expert Systems with Applications, 40(10): 4164–4171
Seddik, M., & Ahmed, M. (2021). Ovarian cancer detection using dimensionality reduction
and genetic algorithms. Retrieved from https://arxiv.org/abs/2105.01748
Sehrish W. & Zahoor A. (2011). Application of Fuzzy Logic in Academic Setup. Proceedings
of 8th International Conference on Recent Advances in Statistics.
Sharma, S, Sharma, S. & Athaiya, A. (2020). Activation Functions in Neural Networks.
International Journal of Engineering Applied Sciences and Technology, 12(4),310-316
Shukla S. S.1 and Jaiswal V. (2013) Applicability of Artificial Intelligence in Different Fields
of Life. https://www.ijser.in/archives/v1i1/MDExMzA5MTU=.pdf
Singh, H., Meyer, A. N. D., & Thomas, E. J. (2017). The impact of diagnostic errors on patient
outcomes. BMJ Quality & Safety, 26(7), 583-592. https://doi.org/10.1136/bmjqs-2016-005401
Surbhi S. (2018 ). Difference Between Information and Knowledge.
https://keydifferences.com/difference-between-information-and-knowledge.html
Techopedia (2017). Knowledge Base.
https://www.techopedia.com/definition/2511/knowledge-base-klog
Tuba F. & Saumya Y. (2019). Modified Clustering Algorithm for Energy Efficiency Utilizing
Fuzzy Logic in WSN. Proceedings of National Conference on Machine Learning, 26th March 2019
Usman, O.L. & Adenubi, A.O.(2013) Artificial Neural Network (ANN) Model for Predicting
Students’ Academic Performance. Journal of Science and Information Technology. 2(1):23-37
Umezuruike, C., Nwankwo, W., Tibenderana, P., Assimwe, J. P. & Muhirwa R. (2020).
Corona Virus Disease (COVID 19): Analysis and Design of an Alert and Real-time Tracking System. International Journal of Emerging Trends in Engineering Research, 8(5), 1743 – 1748
Umezurike, C., Nwankwo, W.& Kareyo, M.(2017a). Implementation Challenges of Health
Management Information Systems in Uganda: A Review, Journal of Multidisciplinary Engineering Science and Technology, 4(7).
Umezurike, C., Nwankwo, W., Okolie, S.O. & Adebayo, A. (2017b). Developing an
Informatics Model for Effective Healthcare in Military Health Facilities in Nigeria. World Journal of Engineering Research and Technology, 3(4).
Umezuruike, C., Nwankwo, W., Okolie, S.O., Adebayo,A.O., Jonah,J.V. & Ngugi,H.(2019).
Health Informatics System for Screening Arboviral Infections in Adults, International Journal of Information Technology and Computer Science (IJITCS), 11(3), 10-22. DOI: https://doi.org/10.5815/ijitcs.2019.03.02
Vasilis, B. (2020). Importance of Technology in Healthcare.
https://ied.eu/blog/importance-of-technology-in-healthcare/
Victor-Ikoh, M.I., Moko, A. & Nwankwo, W. (2022). Towards the Implementation of a Versatile Mobile Health Solutions for the Management of Immunization Against Infectious
Diseases in Nigeria. In: Salvendy, G., Wei, J. (eds) Design, Operation and Evaluation of Mobile Communications. HCII 2022. Lecture Notes in Computer Science, vol 13337. Springer, Cham. https://doi.org/10.1007/978-3-031-05014-5_7
WHO (2020) https://gco.iarc.fr/today/data/factsheets/populations/566-nigeria-fact-sheets.pdf
Waqas, A., Li, P., & Anwar, S. (2023). Multimodal data integration using deep learning for
cancer prediction: A systematic review. Journal of Biomedical Informatics, 135, 104117. doi:10.1016/j.jbi.2023.104117
Wong, H., & Park, Y. (2010). Applications of genetic algorithms in protein folding and cancer
research.
Yanyan, D., Jie, H., Ning ., & Maocong, Z., (2020). Research on How Human Intelligence,
Consciousness, and Cognitive Computing Affect the Development of Artificial Intelligence.
https://downloads.hindawi.com/journals/complexity/2020/1680845.pdf
Zadeh, L. A. (1994). Fuzzy logic, neural networks, and soft computing.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 AFRICAN JOURNAL OF APPLIED RESEARCH
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
By submitting and publishing your articles in the African Journal of Applied Research, you agree to transfer the copyright of the Article from the authors to the Journal ( African Journal of Applied Research).