Integrated Assessment of Nuclear-Renewable Hybrid Energy Systems: A Pathway to Sustainable and Resilient Industrial Electrification in Ghana
DOI:
https://doi.org/10.26437/ajar.v11i2.969Keywords:
Clean energy. climate change. energy access. mitigation. sustainableAbstract
Purpose: Achieving sustainable and cost-effective industrial electrification in Africa necessitates an integrated energy approach that optimally combines Small Modular Reactor (SMR) and renewables, mainly solar and wind energy, as two clean energy sources.
Design/Methodology/Approach: Using HOMER Pro software, system performance was simulated to assess energy generation, economic viability, and environmental benefits. The analysis examined annual energy output, levelised cost of energy (LCOE), and carbon emission reductions to determine system sustainability.
Findings: Due to the integrated energy system, a net energy surplus of 206,079,408 kWh is achieved, enabling grid exports and the potential production of green hydrogen if effectively harnessed. Economic assessments indicate an LCOE of $0.185/kWh, 34% lower than Ghana’s industrial 2024 grid tariff. Additionally, CO2 emissions are reduced by 15,824,965 kg annually, supporting Ghana’s National Energy Transition Agenda.
Research Limitation: Further research is needed to optimise hybrid energy systems, particularly in waste management, policy frameworks, and national grid stability.
Practical Implication: SMRs and renewables can enhance energy reliability and affordability, ensure sustainable industrial development, and drastically lower energy sector emissions.
Social Implications: Integrating nuclear and renewable energy as a hybrid system can reduce energy poverty, drive industrial growth, support sustainable development, and lower environmental impact.
Originality/Value: This study underscores the potential of nuclear-renewable hybrid energy systems to enhance energy security, reduce emissions, and stabilise industrial electricity supply.
References
Adelekan, O. A., Ilugbusi, B. S., Adisa, O., Obi, O. C., Awonuga, K. F., Asuzu, O. F., & Ndubuisi, N. L. (2024). Energy Transition Policies: A Global Review of Shifts Towards Renewable Sources. Engineering Science & Technology Journal, 5(2), 272–287. https://doi.org/10.51594/ESTJ.V5I2.752
Arefin, M. A., Islam, M. T., Rashid, F., Mostakim, K., Masuk, N. I., & Islam, M. H. I. (2021). A Comprehensive Review of Nuclear-Renewable Hybrid Energy Systems: Status, Operation, Configuration, Benefit, and Feasibility. Frontiers in Sustainable Cities, 3, 97. https://doi.org/10.3389/frsc.2021.723910
Brook, B. W., Alonso, A., Meneley, D. A., Misak, J., Blees, T., & van Erp, J. B. (2014). Why nuclear energy is sustainable and has to be part of the energy mix. Sustainable Materials and Technologies, 1–2, 8–16. https://doi.org/https://doi.org/10.1016/j.susmat.2014.11.001
Cosgrove, P., Roulstone, T., & Zachary, S. (2023). Intermittency and periodicity in net-zero renewable energy systems with storage. Renewable Energy, 212, 299–307. https://doi.org/10.1016/j.renene.2023.04.135
Debrah, S. K., Nyasapoh, M. A., Ameyaw, F., Yamoah, S., Allotey, N. K., & Agyeman, F. (2020). Drivers for Nuclear Energy Inclusion in Ghana’s Energy Mix. Journal of Energy, 2020, 1–12. https://doi.org/10.1155/2020/8873058
Esteves, O. L. A., & Gabbar, H. A. (2023). Nuclear-Renewable Hybrid Energy System with Load Following for Fast Charging Stations. Energies, 16(10), 4151. https://doi.org/10.3390/en16104151
Gabbar, H. A., & Abdussami, M. R. (2019). Feasibility Analysis of Grid-Connected Nuclear-Renewable Micro Hybrid Energy System. 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE), 294–298. https://doi.org/10.1109/SEGE.2019.8859925
Gabbar, H. A., & Abdussami, M. R. & Adham, M. I. (2020). Techno-Economic Evaluation of Interconnected Nuclear-Renewable Micro Hybrid Energy Systems with Combined Heat and Power. Energies, 13(7), 1642. https://doi.org/10.3390/en13071642
Ghana Energy Commission. (2024a). 2024 National Energy Statistical Bulletin. https://www.energycom.gov.gh/newsite/index.php/planning/energy-statistics
Ghana Energy Commission. (2024b). 2025 ENERGY OUTLOOK FOR GHANA: Demand and Supply Outlook (Issue April). https://www.energycom.gov.gh/index.php/planning/sub-codes
HOMER Energy. (2023). HOMER Pro - Microgrid Software for Designing Optimized Hybrid Microgrids. https://www.homerenergy.com/products/pro/index.html
Huang, W.-C., Zhang, Q., & You, F. (2023). Impacts of battery energy storage technologies and renewable integration on the energy transition in the New York State. Advances in Applied Energy, 9, 100126. https://doi.org/https://doi.org/10.1016/j.adapen.2023.100126
IAEA. (2023a). Nuclear–Renewable Hybrid Energy Systems. https://www.iaea.org/publications/15098/nuclear-renewable-hybrid-energy-systems
IAEA. (2023b). Nuclear–Renewable Hybrid Energy Systems. In IAEA Nuclear Energy Series No. NR-T-1.24 (Vol. 4, Issue IAEA Nucl. Energy Ser. No. NR-T-1.24). https://www.iaea.org/publications/15098/nuclear-renewable-hybrid-energy-systems
IAEA. (2023c). Nuclear Energy in Mitigation Pathways to Net Zero. https://www-pub.iaea.org/MTCD/publications/PDF/PAT-004_web.pdf
IAEA. (2025a). Advanced Reactor Information System. https://aris.iaea.org/
IAEA. (2025b). The Database on Nuclear Power Reactors. PRIS - Home. https://pris.iaea.org/pris/home.aspx
IEA. (2025). Electricity 2025: Analysis and forecast to 2027. https://iea.blob.core.windows.net/assets/0f028d5f-26b1-47ca-ad2a-5ca3103d070a/Electricity2025.pdf
IRENA. (2021). The Renewable Energy Transition in Africa: Powering Access, Resilience and Prosperity. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/March/Renewable_Energy_Transition_Africa_2021.pdf
IRENA & SELCO Foundation. (2022). Fostering livelihoods with decentralised renewable energy: An ecosystem approach. https://irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jan/IRENA_Livelihood_Decentralised_Renewables_2022.pdf
Jenkins, J. D., Zhou, Z., Ponciroli, R., Vilim, R. B., Ganda, F., de Sisternes, F., & Botterud, A. (2018). The benefits of nuclear flexibility in power system operations with renewable energy. Applied Energy, 222, 872–884. https://doi.org/10.1016/J.APENERGY.2018.03.002
Kaygusuz, K. (2009). Energy and environmental issues relating to greenhouse gas emissions for sustainable development in Turkey. Renewable and Sustainable Energy Reviews, 13(1), 253–270. https://doi.org/10.1016/j.rser.2007.07.009
Liou, J. (2021). Nuclear and Renewables: Modelling Tool to Evaluate Hybrid Energy Systems. IAEA Office of Public Information and Communication. https://www.iaea.org/newscenter/news/nuclear-and-renewables-modelling-tool-to-evaluate-hybrid-energy-systems
Loisel, R., Alexeeva, V., Zucker, A., & Shropshire, D. (2018). Load-following with nuclear power: Market effects and welfare implications. Progress in Nuclear Energy, 109, 280–292. https://doi.org/10.1016/j.pnucene.2018.08.011
MESTI. (2021). Ghana: Updated Nationally Determined Contribution under Paris Agreement (2020-2030). Environmental Protection Agency (EPA) and the Ministry of Environment, Science, Technology and Innovation (MESTI), September. https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Ghana First/Ghana%27s Updated Nationally Determined Contribution to the UNFCCC_2021.pdf
Ministry of Energy. (2019). Ghana Renewable Energy Master Plan. http://www.energycom.gov.gh/files/Renewable-Energy-Masterplan-February-2019.pdf
Ministry of Energy. (2021). National Energy Policy: Energy Sector, an Engine for Economic Growth and Sustainable Development. https://energymin.gov.gh/sites/default/files/2023-09/2021 ENERGY POLICY.pdf
Ministry of Energy. (2023). Ghana’s National Energy Transition Framework (2022-2070). https://www.energymin.gov.gh/search/node?keys=energy+transition
Murshed, M., & Ozturk, I. (2023). Rethinking energy poverty reduction through improving electricity accessibility: A regional analysis on selected African nations. Energy, 267, 126547. https://doi.org/10.1016/j.energy.2022.126547
NREL. (2020). Nuclear–Renewable Synergies for Clean Energy Solutions. News. https://www.nrel.gov/news/program/2020/nuclear-renewable-synergies-for-clean-energy-solutions.html
Nuclear Energy Agency (NEA). (2020). Nuclear Power Economics: Nuclear Energy Costs. https://www.world-nuclear.org/information-library/economic-aspects/economics-of-nuclear-power.aspx
Nyasapoh, M. A. (2018). Modelling Energy Supply Options for Long-term Electricity Generation - A Case Study of Ghana Power System (Issue 10551085) [University of Ghana]. http://ugspace.ug.edu.gh/bitstream/handle/123456789/34942/Modelling Energy Supply Options for Long-Term Electricity Generation - A Case Study of Ghana Power System.pdf?sequence=1&isAllowed=y
Nyasapoh, M. A., & Debrah, S. K. (2020). Nuclear Power Contribution Towards a Low-Carbon Electricity Generation for Ghana. Climate Change and the Role of Nuclear Power. Proceedings of an International Conference. Supplementary Files. https://inis.iaea.org/search/search.aspx?orig_q=RN:52004321
Nyasapoh, M. A., Debrah, S. K., Anku, N. E. L., & Yamoah, S. (2022). Estimation of CO2 Emissions of Fossil-Fueled Power Plants in Ghana: Message Analytical Model. Journal of Energy, 2022, 1–10. https://doi.org/10.1155/2022/5312895
Nyasapoh, M. A., Debrah, S. K., & Twerefou, D. K. (2023). Long-term electricity generation analysis and policy implications–the case of Ghana. Cogent Engineering, 10(1). https://doi.org/10.1080/23311916.2023.2209996
Nyasapoh, M. A., Debrah, S. K., Twerefou, D. K., Gyamfi, S., & Kholi, F. K. (2022). An Overview of Energy Resource and Future Concerns for Ghana’s Electricity Generation Mix. Journal of Energy, 2022, 1–16. https://doi.org/10.1155/2022/1031044
Nyasapoh, M. A., Elorm, M. D., & Derkyi, N. S. A. (2022). The Role of Renewable Energies in Sustainable Development of Ghana. Scientific African, e01199. https://doi.org/10.1016/j.sciaf.2022.e01199
Nyasapoh, M. A., Gyamfi, S., Debrah, S. K., Gabber, H. A., & Agyemang-Derkyi, N. S. (2024). Advancing Access to Affordable and Reliable Electricity Through Nuclear and Renewable Hybrid Energy Systems. In C. Aigbavboa, W. Thwala, J. N. Mojekwu, L. Atepor, E. Adinyira, G. Nani, & E. Bamfo-Agyei (Eds.), Sustainable Education and Development—Clean Energy. ARCA 2023. (pp. 775–788). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-65357-5_51
Nyasapoh, M. A., Gyamfi, S., Debrah, S. K., Gabber, H. A., & Derkyi, N. S. A. (2024). Advancing Africa’s Sustainable Energy Development Through Small Modular Reactors (SMRs) as Low-Carbon Power Solution. 2024 IEEE 12th International Conference on Smart Energy Grid Engineering (SEGE), 103–108. https://doi.org/10.1109/SEGE62220.2024.10739595
Nyasapoh, M. A., Gyamfi, S., Debrah, S. K., Gaber, H. A., & Derkyi, N. S. A. (2023). Evaluating the Effectiveness of Clean Energy Technologies (Renewables and Nuclear) and External Support for Climate Change Mitigation in Ghana. 2023 IEEE 11th International Conference on Smart Energy Grid Engineering (SEGE), 167–171. https://doi.org/10.1109/SEGE59172.2023.10274595
Nyasapoh, M. A., Gyamfi, S., Debrah, S. K., Gaber, H., & Derkyi, N. S. A. (2022). Assessment of the Economic Viability of Nuclear-Renewable Hybrid Energy Systems: Case for Ghana. 2022 IEEE 10th International Conference on Smart Energy Grid Engineering (SEGE), 74–80. https://doi.org/10.1109/SEGE55279.2022.9889765
Nyasapoh, M., Gyamfi, S., Debrah, S. K., Gabbar, H., Derkyi, N., Nassar, Y., Djimasbe, R., Gbinu, J., Odoi-Yorke, F., & El-Khozondar, H. (2025). Navigating Renewable Energy Transition Challenges for a Sustainable Energy Future in Ghana. Solar Energy and Sustainable Development Journal, 14(1), 237–257. https://doi.org/10.51646/jsesd.v14i1.479
Rahman, J., & Zhang, J. (2023). Multi-timescale operations of nuclear-renewable hybrid energy systems for reserve and thermal product provision. Journal of Renewable and Sustainable Energy, 15(2), 025901. https://doi.org/10.1063/5.0138648
Ruth, M. F., Zinaman, O. R., Antkowiak, M., Boardman, R. D., Cherry, R. S., & Bazilian, M. D. (2014). Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs. Energy Conversion and Management, 78, 684–694. https://doi.org/10.1016/j.enconman.2013.11.030
Tan, K. M., Babu, T. S., Ramachandaramurthy, V. K., Kasinathan, P., Solanki, S. G., & Raveendran, S. K. (2021). Empowering smart grid: A comprehensive review of energy storage technology and application with renewable energy integration. Journal of Energy Storage, 39, 102591. https://doi.org/10.1016/j.est.2021.102591
The Economist. (2022). Green power needs more than just solar panels and wind turbines. Science & Technology Grid Inertia. https://www.economist.com/science-and-technology/green-power-needs-more-than-just-solar-panels-and-wind-turbines/21809104
The World Bank. (2022). Tracking SDG 7 – The Energy Progress Report 2022. https://www.worldbank.org/en/topic/energy/publication/tracking-sdg-7-the-energy-progress-report-2022
The World Bank. (2024). TRACKING SDG 7: The Energy Progress Report. https://trackingsdg7.esmap.org/downloads
UNDP. (2025). What is the sustainable energy transition and why is it key to tackling climate change? UNDP Climate Promise. https://climatepromise.undp.org/news-and-stories/what-sustainable-energy-transition-and-why-it-key-tackling-climate-change
US Department of Energy. (2020). What is Generation Capacity? https://www.energy.gov/ne/articles/what-generation-capacity
World Bank Group. (2024a). Global Solar Atlas: Ghana. https://globalsolaratlas.info/download/ghana
World Bank Group. (2024b). Global Wind Atlas: Ghana. https://globalwindatlas.info/en/area/Ghana
World Nuclear Association. (2022). Nuclear Energy and Sustainable Development. https://world-nuclear.org/information-library/energy-and-the-environment/nuclear-energy-and-sustainable-development.aspx
Zhang, G., Zhou, H., Ge, Y., Magabled, S. M., Abbas, M., Pan, X., Ponnore, J. J., Asilza, H., Liu, J., & Yang, Y. (2024). Enhancing on-grid renewable energy systems: Optimal configuration and diverse design strategies. Renewable Energy, 235, 121103. https://doi.org/10.1016/j.renene.2024.121103
Zhang, K. (2023). Analysis of Continuous Development with Nuclear Energy. SHS Web of Conferences, 154, 03017. https://doi.org/10.1051/shsconf/202315403017
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 AFRICAN JOURNAL OF APPLIED RESEARCH

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
By submitting and publishing your articles in the African Journal of Applied Research, you agree to transfer the copyright of the Article from the authors to the Journal ( African Journal of Applied Research).