The Role of Distributed Generation on The Performance of Electrical Radial Distribution Network
DOI:
https://doi.org/10.26437/ajar.31.10.2022.20Abstract
Purpose: This article provides available information on the role of distributed generation (DG) in the performance of a power distribution network.
Design/methodology/approach: The study reviewed articles about available methods for reducing technical losses in electrical distribution networks. The second step involved studying various researchers' views on renewable energy in some developing countries for introducing DG into a distribution network. The influence of DG on the economic performance of a distribution network. Finally, the study scouted for available information on the implementation of a demand response (DR) program on the performance of a distribution network in the presence of DG.
Findings: Available information reveals that the reliability of DG for reducing the technical losses in a distribution network is higher than relying on alternating current controllers. There are indications of renewable energies in developing countries for introducing DG into a distribution network. According to the articles reviewed, the approach for the optimal location of DG did not include the combination of the voltage stability index and power loss reduction index. It is also worth considering using the power system analysis toolbox (PSAT) for DG sitting. The economic influence of DG on a distribution network's performance has not been evaluated based on the technical loss, generation cost, emission cost and reliability. It is also worth considering the benefits of demand response programs in the presence of DG.
Research limitation: The review concentrated mainly on DG's influence in reducing technical loss. Articles relating to the effect of DG on other distribution network technical issues such as voltage stability, harmonics etc. also require attention
Practical implications: Distribution network performance is essential for the operation of electrical gadgets. Therefore, improved distribution network performance will result in the economic development of a country.
Originality/Value: This paper provides the platform that stimulates interest in using DG to improve the distribution network performance.
References
Aalami, H. A., Khodaei, J., & Fard , M. (2011). Economical and Technical Evaluation of Implementation Mandatory Demand Response Programs on Iranaian Power System. IEEE Student Conference on Research and Development (SCOReD) (pp. 271-276). Cyberjaya: IEEE. doi:10.1109/SCOReD.2011.6148749
Abanda, F. H. (2012). Renewable energy sources in Cameroon: Potentials, benefits and enabling environment. Renewable and Sustainable Energy Reviews, 16, 4557-45562.
Abanda, F. H. (2012). Renewable energy sources in Cameroon: Potentials, benefits and enabling environment. Renewable and Sustainable Energy Reviews, 16, 4557-45562. doi:10.1016/j.rser.2012.04.011
Adefarati, T., & Bansal, R. C. (2017). Reliability and economic assessment of a microgrid power system with the integration of renewable energy sources. Applied Energy, 911 - 933. doi:10.1016/j.apenergy.2017.08.228
Adefarati, T., & Bansal, R. C. (2019). Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resource. Applied Energy, 1089 - 1114. doi:10.1016/j.apenergy.2018.12.050
Ahmad, S. (2017). Impact of Distributed Generation on the Reliability of Local Distribution System. (IJACSA) International Journal of Advanced Computer Science and Applications,, 8(6), 375 - 385. doi:10.14569/IJACSA.2017.080649
Albadi, M., & El-Saadany, E. (2007). Demand Response in Electricity Markets: An Overview. (pp. 1-5). Tampa: EEE. doi:10.1109/PES.2007.385728
Asumadu-Sarkodie, S., & Owusu , P. A. (2016). The potential and economic viability of solar photovoltaic power in Ghana. ENERGY SOURCES, PART A: RECOVERY, UTILIZATION, AND ENVIRONMENTAL EFFECTS, 1-6. doi:10.1080/15567036.2015.1122682
Bawankar, A. S., & Rajderkar, V. P. (2010). Thyristor Controlled Series Compensator to Resolve Congestion Caused Problems. International Conference on Emerging Trends in Engineering and Technology (pp. 390-395). IEEE. doi:10.1109/ICETET.2010.133
Beaty, W. H., & Fink, D. G. (2013). Standard Handbook for Electrical Engineers (Sixteenth Edition ed.). New York: McGraw-Hill.
Benysek, G. (2007). Improvement in the Quality of Delivery of Electrical Energy using Power Electronics Systems. London: Springer-Verlag London Limited. doi:10.1007/978-1-84628-649-0
Boadi, S. A., & Owusu, K. (2017). Impact of climate change and variability on hydropower in Ghana. African Geographical Review. doi:10.1080/19376812.2017.1284598
Burt, E., Orris, P., & Buchanan, S. (2013). Scientific Evidence of Health Effects from Coal use in Energy Generation.
Chatterjee, S., Nath, P., Biswas, R., & Das, M. (2013). Advantage of DG for improving voltage profile over facts devices. International Journal for Engineering Research and Applications (IJERA), 2029 - 2032.
Contey, A., Lotfy, M. E., Adewuyi, O. B., Mandal, P., Takahashi, H., & Senjyu, T. (2020). Demand Response Economic Assessment with the Integration of Renewable Energy for Developing Electricity Markets. Sustainability, 12. doi:10.3390/su12072653
Devabalaji, K. R., & Ravi, K. (2016). Optimal size and siting of multiple DG and DSTATCOM in radial distribution system using Bacterial Foraging Optimization Algorithm. Ain Shams Engineering Journal, 959 - 971. doi:10.1016/j.asej.2015.07.002
Dinakaran, C., & Venkateswara, S. (2015). Implementation of Shunt and Series FACTS Devices for Overhead Transmission Lines. International Electrical Engineering Journal (IEEJ), 6(8), 2009-2016.
Dobrijević, D. M., & Milanović, J. V. (2010). Contribution of phase shifting transformers to improvement of the security of power transfer from the power plant. 7th Mediterranean Conference and Exhibition on Power Generation, Transmission, Distribution and Energy Conversion (MedPower 2010) (pp. 1-5). Agia Napa: IEEE. doi:10.1049/cp.2010.0953
Dulhe, S. (2015, May). Reactive Power Compensation techniques in Transmission Lines. International Journal on Recent and Innovation Trend in Computing and Communication, 3(5), 3224-3226.
Efkarpidis, N., De Rybel, T., & Driesen, J. (2016). Optimal placement and sizing of active in-line voltage regulators in flemish LV distribution grids. IEEE Transactions on Industry Applications, 52(6), 4577-4584.
Eid, C., Koliou, E., Valles, M., Reneses, J., & Hakvoort, R. (2016). Time-based pricing and electricity demand response: Existing barriers and next steps. Utilities Policy, 40, 15-25.
Elbisy, M. S., & Mlybari, E. A. (2017). Environmental Risk Management and Mitigation Strategies for Offshore Gas Well Drilling Projects (Case Study: Abu Qir Bay, Egypt). Journal of Civil, Construction and Environmental Engineering, 2(2), 66 - 77. doi:10.11648/j.jccee.20170202.14
Elsherif, A., & Shaaban, H. (2015). Location and Sizing of Distributed Generation Units in Primary Networks for Loss Reduction and Voltage Enhancement. MEPCON . Research Gate.
Energy Commission, G. (2014). National Energy Statistics (2004 - 2013). Accra: Energy commission.
Energy Commission, G. (2017). National Energy Statistics (2007-2016). Accra: Energy Commission.
Faridi, M., Maeiiat, H., Karimi, M., Farhadi, P., & Mosleh, H. (2011). Power system stability enhancement using static synchronous series compensator (SSSC). 3rd International Conference on Computer Research and Development (pp. 387 - 391). IEEE. doi:10.1109/ICCRD.2011.5764220.
Fathoni, A. M., Utama, N. A., & Kristianto, M. A. (2014). A Technical and Economic Potential of Solar Energy Application with Feed-in Tariff Policy in Indonesia. International Conference on Sustainable Future for Human Security (pp. 89-96). Elsevier B.V. doi:10.1016/j.proenv.2014.03.013
Fujita, H., Akagi, H., & Watanabe, Y. (2006). Dynamic Control and Performance of a Unified Power Flow Controller for Stabilizing an AC transmission System. IEEE Transactions on Power Electronics, 1013 - 1020. doi:10.1109/TPEL.2006.876845
Gbadamosi, S. L., & Nwulu, N. I. (2020). Reliability assessment of composite generation and transmission expansion planning incorporating renewable energy sources. Renewable Sustainable Energy, 12. doi:10.1063/1.5119244
Gbadamosi, S., Nwulu, N. I., & SUN, Y. (2018). "Multi-Objective Optimization for Composite Generation and Transmission Expansion Planning Considering Offshore Wind Power and Feed in Tariffs. Journal of Renewable and Sustainable Energy, 12(14), 1687-1697. doi:10.1063/1.5119244
Gelazanskas, L., & Gamage, K. A. (2014). Demand side management in smart grid: A review and proposals for future direction. Sustainable Cities and Society, 11, 22-30.
Grisales, L. F., Grajales, A., Montoya, O. D., Hincapie, R. A., & Granada, M. (2015). Optimal location and sizing of Distributed Generators using a hybrid methodology and considering different technologies. Latin American Symposium on Circuits & Systems (LASCAS) (pp. 1-4). IEEE. doi:10.1109/LASCAS.2015.7250486
Hassan, Q., Jaszczur, M., & Abdulateef, J. (2016). Optimization of PV/WIND/DIESEL Hybrid Power System in HOMER for Rural Electrification . Journal of Physics, (pp. 1 -8).
Hatziargyriou, N. D., Gastasiadis, A. G., & Tsi, A. G. (2011, 3 25). Quantification of economic, environmental and operational benefits due to significant penetration of Microgrids in a typical LV and MV Greek network. doi:10.1002/etep.392
Hraïech, A. E., Ben-Kilani, K., & Elleuch, M. (2014). Control of parallel EHV interconnection lines using Phase Shifting Transformers. International Multi-Conference on Systems, Signals & Devices (pp. 1-7). IEEE. doi:10.1109/SSD.2014.6808829
Imanishi, T., Nagatomo, Y., Iwasaki, S., Masaki, K., Fujii, T., & Ieda, J. (2014). 130MVA-STATCOM for transient stability improvement. International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA) (pp. 2663-2667). IEEE. doi:10.1109/IPEC.2014.6869966
Irinjila, K. K., & Jaya, L. A. (2011). Shunt versus Series compansation in the improvement of power system performance. International Journal of Applied Engineering Reseach, 28-37.
Islam, M. A., Hasanuzzaman, M., Rahim, N. A., Nahar, A., & Hosenuzzaman, M. (2014). Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security. The Scientific World Journal. doi:10.1155/2014/19713
Jadhao, C. W., & Vadirajacharya, K. (2015). Performance improvement of power system through Static VAR Compensator using sensitivity indices analysis method. International Conference on Energy Systems and Applications (pp. 200-202). Pune: IEEE. doi:10.1109/ICESA.2015.7503339
Jamhoria, S., & Srivastava, L. (2014). Applications of thyristor controlled series compensator in power system: An overview. International Conference on Power Signals Control and Computations (EPSCICON) (pp. 1-6). IEEE. doi:10.1109/EPSCICON.2014.6887516
Jaswani, M., Bharti, S., & Dubey, S. P. (2015). A Study of Reactive Power Compensation in Transmission System. International Journal of Advanced Engineering Research and Studies .
Kaur, M., & Mehta, S. (2016). Optimal placement and sizing of distributed generation unit using human opinion dynamics algorithm. India International Conference on Power Electronics (IICPE) (pp. 1-4). IEEE. doi:10.1109/IICPE.2016.8079399
Khan, S., & Bhowmick, S. (2014). A novel power flow model of a Static Synchronous Series Compensator (SSSC). IEEE Power India International Conference (PIICON) (pp. 1-6). IEEE. doi:10.1109/POWERI.2014.7117606
Khanchi, S., & Garg, V. K. (2013). Unified Power Flow Controller (UPFC): A Review. International Journal of Engineering Research and Application (IJERA), 1430-1435.
Kiplagat, J. K., Wang, R. Z., & Li, T. X. (2011). Renewable energy in Kenya: Resource Potentials and Status of Exploitation. Renewable and Sustainable Energy Reviews, 15, 2960–2973.
Kumar, B. S., Suryakalavathi, M., & Kumar, G. V. (2015). Optimal power flow with static VAR compensator based on flower pollination algorithm to minimize real power losses. Conference on Power, Control, Communication and Computational Technologies for Sustainable Growth (PCCCTSG) (pp. 112-116). Andhra Pradesh: IEEE. doi:10.1109/PCCCTSG.2015.7503934
Kumar, S. A., Easwarlal, C., & Kumar, M. S. (2012). Multi machine power system stability enhancement using Static Synchronous Series Compensator (SSSC). International Conference on Computing, Electronics and Electrical Technologies (ICCEET) (pp. 212 - 217). IEEE. doi:10.1109/ICCEET.2012.6203756
Kumarappan, N., & Arulraj, R. (2016). Optimal Installation of multiple DG units using competitive Swarm Optimizer (CSO) algorithm. Congress on Evolutionary computation (CEC) (pp. 3955 - 3960). IEEE. doi:10.1109/CEC.2016.7744291
Lee, Y. O., Gui, Y., Han, Y., & Chung, C. C. (2015). Stabilization of asymmetrically structured back-to-back static synchronous compensator system with non-linear damping control. IET Power Electronics, 8(10), 1952-1962. doi:10.1049/iet-pel.2015.0004
Li, H., Gao, F., Li, X., Ai, S., Zhang, S., & Tian , B. (2015). Simulation Study on Series Capacitor Compensation to Improve the Voltage Quality of Rural Power Distribution Network. World Journal of Engineering and Technology, 184-190. doi:10.4236/wjet.2015.33C027
Ling, F., Jiaoyang, L., Fei, Y., Liqun, L., Jun, L., Yeyuan, X., & Xiaodong, S. (2016). Stability analysis of multiple Static Synchronous Compensators in parallel operation. International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia) (pp. 1318 - 1322). IEEE.
Lipu, M. S., & Karim, T. F. (2013). Effectiveness of FACTS controllers and HVDC transmissions for improving power system stability and increasing power transmission capability. International Journal of Energy and Power Engineering, 2(4), 154-163. doi:10.11648/j.ijepe.20130204.13
Liu, L., Zhu, P., Kang, Y., & Chen, J. (2007). Power-Flow Control Performance Analysis of a Unified Power-Flow Controller in a Novel Control Scheme. IEEE Transactions on Power Delivery, 22(3), 1613 - 1619. doi:10.1109/TPWRD.2006.886799
Mahari, A., & Mahari, A. (2014). Optimal DG and Capacitor allocation in distribution systems using DCIA. Journal for Engineering Science and Technology, 641 -656.
Maiga, A. S., Chen, G. M., Wang, Q., & Xu, J. Y. (2008). Renewable energy options for a Sahel country: Mali. Renewable and Sustainable Energy Reviews, 12, 564–574. Retrieved from 10.1016/j.rser.2006.07.005
Maiga, A. S., Chen, G. M., Wang, Q., & Xu, J. Y. (2008). Renewable energy options for a Sahel country: Mali. Renewable and Sustainable Energy Reviews, 12, 564–574. doi:10.1016/j.rser.2006.07.005
Makhathini, D., Mbuli, N., Sithole, S., & Pretorius, J. (2012). Enhancing the utilization of the matlala and glencowie 22kV radial feeders by interconnecting them using a phase shifting transformer. International Conference on Environment and Electrical Engineering (pp. 844-848). IEEE. doi:10.1109/EEEIC.2012.6221493
Maltitz, G., Haywood, L., Mapako, M., & Brent, A. (2009, June). Analysis of opportunities for biofuel production in sub-Saharan Africa. Retrieved September 24, 2018, from 10.17528/cifor/002798
Maltitz, G., Haywood, L., Mapako, M., & Brent, A. (2009, June). Analysis of opportunities for biofuel production in sub-Saharan Africa. Retrieved September 24, 2018, from http://www.cifor.org/publications/pdf_files/EnviBrief/04-EnviBrief.pdf
Ministry of Power, G. (2016, 12 20). Renewable Energy Resources and Potentials in Ghana. Retrieved June 3, 2018, from https://ambaccra.esteri.it/Ambasciata_Accra/resource/doc/2016/12/renewable_resources_and_potentials_20.12.2016.pdf
Mohagheghi, S., & Falahati, B. (2011). Impact of demand response on distribution system reliability. 2011 IEEE Power and Energy Society General Meeting, 1-7. doi:10.1109/PES.2011.6039365
Mohammed, Y. S., Mustafa, M. W., Bashir, N., & Mokhtar, A. S. (2013). Renewable energy resources for distributed power generation in Nigeria: A review of the potential. Renewable and Sustainable Energy Reviews, 22, 257–268.
Mohammed, Y. S., Mustafa, M. W., Bashir, N., & Mokhtar, A. S. (2013). Renewable energy resources for distributed power generation in Nigeria: A review of the potential. Renewable and Sustainable Energy Reviews, 22, 257–268. doi:10.1016/j.rser.2013.01.020
Molapo, R., Mbuli, N., & Ijumba, N. (2011). Enhancement of the voltage stability and steady state performance of the cape corridor using phase shifting transformers. AFRICON (pp. 1-6). IEEE. doi:10.1109/AFRCON.2011.6072123
Mondal, D., Chakrabarti, A., & Sengupta, A. (2014). Power System Small Signal Stability Analysis and Control. Elsevier Inc. doi:https://doi.org/10.1016/C2013-0-18470-X
Murali , D., Rajaram , M., & Reka , N. (2010, october). Comparison of FACTS Devices for Power System Stability Enhancement. International Journal of Computer Applications, 8(4), 30-35.
Nejad, H. C., Tavakoli, S., Ghadimi, N., Korjani, S., Nojavan, S., & Pashaei-Didani, H. (2019). Reliability based Optimal Allocation of Distributed Generations in Transmission System under Demand Response Program. Electric Power Systems Research, 179. doi:10.1016/j.epsr.2019.105952
Nikzad, M., & Mozafari, B. (2014, March). Reliability assessment of incentive- and priced-based demand response programs in restructured power systems. International Journal of Electrical Power & Energy Systems, 56, 83-96. doi:10.1016/j.ijepes.2013.10.007
Northcote-Green, J., & Wilson, R. (2017). Control and automation of electrical power distribution systems. CRC press.
Nwulu, N. I., & Xia, X. (2017). Optimal dispatch for a Microgrid Incorporating Renewables and Demand Response. Renewable Energy, 101, 16-28. doi:10.1016/j.renene.2016.08.026
Ogunjuyigbe, A. S., Ayodele, T. R., & Alinala, O. O. (2016). Impact of distributed generators on the power loss and voltage profile of sub-transmission network. Electrical Systems and information Technology, 94 - 107. doi:10.1016/j.jesit.2015.11.010
Ogunsina, A. A., Petinrin, M. O., Petinrin, O. O., Ofornedo, E. N., Petinrin, J. O., & Asaolu, G. O. (2021). Optimal distributed generation location and sizing for loss minimization and voltage proile optimization using ant colony algorithm. SN Applied Sciences. doi:10.1007/s42452-021-04226-y
Olatomiwa, L., Saad, M., Huda, A. S., & Kamilu, S. A. (2015). Techno-economic analysis of hybrid PV-diesel-battery and PV-wind-diesel-battery power systems for mobile BTS: The way forward for rural development. Energy Science and Engineeing, 271 - 285. doi:10.1002/ese3.71
Pazouki, S., & Kerendian, R. F. (2012, July). EFFECT OF DISTRIBUTION GENERATION ON DISTRIBUTION NETWORK AND COMPARE WITH SHUNT CAPACITOR. International Journal of Advances in Engineering & Technology, (IJAET), 4(1), 298-303.
Pfeiffer, C. (2014). RETScreen Modeling for Combined Energy Systems Fertilizers Plant Case. Conference for Simulation and Modelling, (pp. 7-15). Aalborg.
Pisica, I., Bulac, C., & Eremia, M. (2009). Optimal Distributed Generation Location and Sizing using Genetic Algorithms. International Conference on Intelligent System Applications to Power Systems (pp. 1-6). IEEE. doi:10.1109/ISAP.2009.5352936
Priya, R., & Prakash, S. (2014, March). Optimal Location and Sizing of Generator in Distributed Generation System. Innovative Research in Electrical, Electronic, Instrumentation and Control Engineering, 1272.
Rajalakshmi, J., & Durairaj, S. (2016). Review on optimal distributed generation placement using particle swarm optimization algorithms. International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS) (pp. 1 - 6). IEEE. doi:10.1109/ICETETS.2016.7603088
Rakesh, R., VenkataPanana, P., & Keerthi, S. (2017). A hybrid algorithm for optimal allocation of DG in radial distribution system. Region 10 synposium (TENSYMP). IEEE. doi:10.1109/TENCONSpring.2017.8070009
Ramakrishna Rao, B. T., Chanti, P., Lavanya, N., Sekhar, S. C., & Kumar, Y. M. (2014, April). Power System Stability Enhancement Using Fact Devices. Int. Journal of Engineering Research and Applications, 4(4), 339-344.
Ramli, M. S., Wahid, S. S., & Hassan, K. K. (2017). A comparison of renewable energy technologies using two simulation softwares: HOMER and RETScreen. International Conference on Applied Physis and Engineering (ICAPE 2016) (pp. 030013-1 - 030013-7). American Institude of Physics. doi:10.1063/1.4998384
Rath, A., Ghatak, S. R., & Goyal, P. (2016). Optimal Allocation of Distributed Generation (DGs) and Static VAR compensator (SVC) in a power system using Revamp Voltage Stability Indicator. IEEE. doi:10.1109/NPSC.2016.7858877
Rathod, M. (2016). Unified Power Flow Controller. International Journal for Innovative Research in Science and Technology, 393-396.
Santos, A. Q., Zheng, M., Olsen, C. G., & Jorgensen, B. N. (2018). Framework for Microgrid Design Using Social, Economic, and Technical Analysis. Energies, 11(10). doi:10.3390/en11102832
Shankar, C. U., Thottungal, R., & Mythili, S. (2015). Voltage stability improvement and power oscillation damping using Static Synchronous Series Compensator (SSSC). IEEE 9th International Conference on Intelligent Systems and Control (ISCO) (pp. 1-6). IEEE. doi:10.1109/ISCO.2015.7282369
Shivarudraswamy, R., Gaondar, D. N., & Jayalakshmi, S. N. (2016). GA based optimal location and size of the distributed generators in disttribution system for different load condition. 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES). IEEE.
Shukla, S. N., Singl, C. S., & Dwivedi, J. K. (2016). Improvement of voltage profile using static VAR compensation for Arc welding. International Conference on Industrial and Information Systems (ICIIS) (pp. 431 - 436). IEEE. doi:10.1109/ICIINFS.2016.8262979
Siddiqui, A. S., Khan, S., Ahsan, S., Khan, M. I., & Annamalai. (2012). Application of phase shifting transformer in Indian Network. International Conference on Green Technologies (ICGT) (pp. 186-191). IEEE. doi:10.1109/ICGT.2012.6477970
Somefun, T. E., Abdulkareem, A., Awosope, C. O., & Alayande, A. S. (2021). A Simplified Approach for Optimal Location of distributed Generators within Distribution Network. International Conference on Science and Sustainable Development (ICSSD 2020). IOP Conf. Series: Earth and Environmental Science 655 (2021) 012033. doi:10.1088/1755-1315/655/1/012033
Su, C., & Chen, Z. (2011). Damping Inter-Area Oscillations Using Static Synchronous Series Compensator (SSSC). Universities' Power Engineering Conference (UPEC), Proceedings of 2011 46th International (pp. 1-6). VDE .
Sulaiman, M. H., Mustafa, M. W., Azmi, A., Aliman, O., & Abdul Rahim, S. R. (2012). Optimal Allocation and Sizing of Distributed Generation in Distribution System via Firefly Algorithm. IEEE International Power Engineering and Optimization Conference (pp. 84-89). Melaka: IEEE. doi:10.1109/PEOCO.2012.6230840
Syrri, L. A., & Mancarella, P. (2016). Reliability and risk assessment of post-contingency and demand response in smart distribution networks. Sustainable Energy, Grid and Networks, 7, 1- 12. doi:10.1016/j.sengan2016.04.002
Talaat, H. E., & Al-Ammar, E. (2011). Optimal Allocation and Sizing of Distributed Generation in Distribution Networks Using Genetic Algorithms. International Conference on Electrical Power Quality and Utilisation. IEEE. doi:10.1109/EPQU.2011.6128840
Tan, W. S., Hassan, M. Y., Majid, M. S., & Rahman, H. A. (2013). Allocation and sizing of DG using Cuckoo Search algorithm. IEEE International Conference on Power and Energy (PECon) (pp. 133 - 138). Kota: IEEE. doi:10.1109/PECon.2012.6450192
Tolba, M. A., Tulsky, V. N., & Diab, A. A. (2017). Optimal sitting and sizing of renewable distributed generations in distribution networks using a hybrid PSOGSA optimization algorithm. IEEE International Conference on Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe) (pp. 1-7). IEEE. doi:10.1109/EEEIC.2017.7977441
U.S. Department of Energy. (2006). Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them.
Vijaysimha, N., & Kumar , P. P. (2013, June). Shunt Compensation on EHV Transmission line. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2(6), 2452-2460.
Vu, T. V., Edrington, C. S., & Hovsapian, R. (2018). Distributed Demand Response Considering Line Loss for Distributed Renewable Energy Systems. (pp. 1-5). Chicago: IEEE. doi:10.1109/PESGM.2017.8274561
Wang, K., & Crow, M. L. (2011). Power System Voltage Regulation via STATCOM Internal Nonlinear Control. IEEE Transactions on Power Systems, 26(3), 1252-1262. doi:10.1109/TPWRS.2010.2072937
Wang, K., Ye, M., Xiong, W., Wang, F., & Hou, J. (2016). Coordinated control of STATCOM and mechanically switched capacitors to improve short-term voltage stability. IEEE International Conference on Power System Technology (POWERCON) (pp. 1-5). IEEE. doi:10.1109/POWERCON.2016.7753885
Zhang, X.-P., Rehtanz, C., & Pal, B. (2006). Flexible AC Transmission Systems: Modelling and Control. Verlag Berlin Heidelberg: Springer.
Zhao, N., Wang, B., & Wang, v. (2019). A Model for Multi-Energy Demand Response with Its Application in Optimal TOU Price. Energies, 12, 1-18. doi:10.3390/en12060994
Zia, Z., & Shaikh, F. A. (2017). Economic and Environmental impact assessment of rural areas of Pakistan. SEEP. Solvenia. doi:10.18690/978-961-286-053-0.6
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 AFRICAN JOURNAL OF APPLIED RESEARCH
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
By submitting and publishing your articles in the African Journal of Applied Research, you agree to transfer the copyright of the Article from the authors to the Journal ( African Journal of Applied Research).