Growth and Yield Response of Ginger (Zingiber Officinale) to Different Application Levels of High Molecular Weight Chitosan

Authors

  • W. O. Aduguba Bolgatanga Technical University, Bolgatanga, Ghana.
  • D. Oppong-Sekyere Bolgatanga Technical University, Bolgatanga, Ghana.
  • J. Akumbutum Bolgatanga Technical University, Bolgatanga, Ghana.

DOI:

https://doi.org/10.26437/ajar.v10i2.799

Keywords:

Chitosan application. concentrations. ginger. soaked. yield responses

Abstract

Purpose: This study examines soaking ginger (Zingiber officinale Roscoe) in different High Molecular Weight Chitosan (HMWCHT) concentrations to assess its influence on growth and yield. The study examined the impact of chitosan soaking on ginger growth.

Design/Methodology/Approach: This study employed a randomised complete block design. Three chitosan concentrations (0, 50, and 100 ppm) were used, and growth parameters (plant height, leaf count, and chlorophyll content) were assessed over 12 weeks. Means were separated using the Duncan Multiple Range Test (DMRT) as the significance test at p≤ 0.05.

Findings:  Weeks 10 and 12 saw remarkable values for plant height (66.3 cm and 69.1 cm), leaf count (20.33 and 22.0), and chlorophyll content (79.0 and 81.0) in ginger soaked in 50 ppm, highlighting the potential of high chitosan concentrations for ginger growth. Moreover, 50 and 100 ppm chitosan resulted in significantly higher yields, with ginger soaked in 100 ppm yielding the most (1830 g).

Research Limitation: The study's controlled conditions and limited chitosan concentrations may not fully capture field variability or broader application ranges.

Practical Implications: Soaking ginger in 100 ppm chitosan significantly enhances growth and yield, offering practical, eco-friendly alternatives to synthetic fertilisers.

Social Implications: Improved ginger yields support food security, farmer income, and sustainable agricultural development through environmentally friendly agricultural practices.

Originality/Value: This study underscores the positive impact of high-molecular-weight chitosan soaking on ginger's growth and yield response. Chitosan, particularly at a concentration of 100 ppm, holds promise as a growth enhancer for commercial ginger cultivation.

Author Biographies

W. O. Aduguba, Bolgatanga Technical University, Bolgatanga, Ghana.

Mr. Wilberforce Orlando Aduguba is a Lecturer at the Department of Ecological Agriculture, School of Agriculture, Bolgatanga Technical University, Bolgatanga, Ghana.

D. Oppong-Sekyere, Bolgatanga Technical University, Bolgatanga, Ghana.

Prof. Daniel Oppong-Sekyere is an Associate Professor at the Department of Ecological Agriculture, School of Agriculture, Bolgatanga Technical University, Bolgatanga, Ghana.

J. Akumbutum, Bolgatanga Technical University, Bolgatanga, Ghana.

Judith Akumbutum is a student in the Department of Ecological Agriculture, School of Agriculture, Bolgatanga Technical University, Bolgatanga, Ghana.

References

Ahmed, M., Zhang, W., & Kim, Y. (2021). "Biostimulatory and antimicrobial effects of high molecular weight chitosan on crop plants." Journal of Agricultural Science and Technology, 23(4), 389–402.

Ali, M., Singh, B., & Kumar, P. (2015). "Impact of waterlogging on ginger rhizome yield and quality." International Journal of Plant Sciences, 11(3), 210–216.

Anandaraj, M., George, J., & Mathew, P. A. (2015). "Foliar application of micronutrients in ginger cultivation." Indian Journal of Horticulture, 72(1), 78–83.

Appiah, S., Adjei-Nsiah, S., & Kumaga, F. (2017). "Constraints to ginger production in Ghana: A case study of the Ashanti Region." Ghana Journal of Agricultural Science, 50(2), 132-140.

Awang, D. V. (2009). Tyler's herbs of choice: the therapeutic use of phytomedicinals. CRC Press.

Bag, B. B. (2018). Ginger processing in India (Zingiber officinale): A review. Int J Curr Microbiol App Sci, 7(4), 1639–1651.

Bakshi, P. S., Selvakumar, D., Kadirvelu, K., & Kumar, N. S. (2020). Chitosan as an environment friendly biomaterial–a review on recent modifications and applications. International journal of biological macromolecules, 150, 1072-1083.

Bhattacharyya, P., Pal, R., & Mandal, A. (2017). "Organic amendments and nutrient management in ginger cultivation." Agricultural Reviews, 38(3), 206–213.

Boamah, P. O., Onumah, J., Aduguba, W. O., & Santo, K. G. (2023). Application of depolymerized chitosan in crop production: A review. International Journal of Biological Macromolecules, 123858.

Campos, E. V. R., do Espirito Santo Pereira, A., de Oliveira, J. L., Villarreal, G. P. U., & Fraceto, L. F. (2022). Nature-Based Nanocarrier System: An Eco-friendly Alternative for Improving Crop Resilience to Climate Changes. Anthropocene Science, 1(3), 396-403.

Chandrashekar, H. M. (2010). Changing scenario of organic farming in India: An overview.

Chen, J., Xiao, Z., Wu, F., Dong, X., He, J., Pei, Z., ... Liu, L. (2015). Impact of fertilization and ecological factors on rhizome yield and active compounds of ginger. Industrial Crops and Products, 65, 71–78.

Dasgupta, R. K., Dey, S., Roy, S., Samanta, A., & Chakraborty, J. (2023). The potential role of traditionally used plants as immunomodulators.

El Hadrami, A., Adam, L. R., & Daayf, F. (2016). "Chitosan in plant protection and growth enhancement." Plant Science, 220, 173–180.

El Hadrami, A., Adam, L. R., El Hadrami, I., & Daayf, F. (2010). Chitosan in Plant Protection. Marine Drugs, 8(4), 968–987.

Giller, K. E., Hijbeek, R., Andersson, J. A., & Sumberg, J. (2021). Regenerative agriculture: an agronomic perspective. Outlook on agriculture, 50(1), 13-25.

Hassan, O., & Chang, T. (2017). Chitosan for eco-friendly control of plant disease. Asian J. Plant Pathol, 11(2), 53-70.

Hazafa, A., Murad, M., Masood, M. U., Bilal, S., Khan, M. N., Farooq, Q., ... & Naeem, M. (2021). Nano-biopesticides as an emerging technology for pest management. In Insecticides-Impact and Benefits of Its Use for Humanity.

Kandiannan, K., Kizhakkayil, J., & Mathew, G. (2019). "High-yielding ginger varieties for tropical climates." Journal of Plantation Crops, 47(1), 45–52.

Kandiannan, K., Parthasarathy, U., Krishnamurthy, K. S., Thankamani, C. K., & Srinivasan, V. (2009). Modeling individual leaf area of ginger (Zingiber officinale Roscoe) using leaf length and width. Scientia Horticulturae, 120(4), 532–537.

Karamchandani, B. M., Chakraborty, S., Dalvi, S. G., & Satpute, S. K. (2022). Chitosan and its derivatives: Promising biomaterial in averting fungal diseases of sugarcane and other crops. Journal of Basic Microbiology, 62(5), 533-554.

Kashyap, P. L., Xiang, X., & Heiden, P. (2015). Chitosan nanoparticle based delivery systems for sustainable agriculture. International journal of biological macromolecules, 77, 36–51.

Kavlock, R. J., Daston, G. P., DeRosa, C., Fenner-Crisp, P., Gray, L. E., Kaattari, S., ... & Tilson, H. A. (1996). Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the US EPA-sponsored workshop. Environmental health perspectives, 104(suppl 4), 715-740.

Kheiri, A., Jorf, S. M., Malihipour, A., Saremi, H., & Nikkhah, M. (2017). Synthesis and characterization of chitosan nanoparticles and their effect on Fusarium head blight and oxidative activity in wheat. International journal of biological macromolecules, 102, 526-538.

Kisiriko, M., Anastasiadi, M., Terry, L. A., Yasri, A., Beale, M. H., & Ward, J. L. (2021). Phenolics from medicinal and aromatic plants: Characterisation and potential as biostimulants and bioprotectants. Molecules, 26(21), 6343.

Kubra, I. R., & Rao, L. J. M. (2012). An impression on current developments in the technology, chemistry, and biological activities of ginger (Zingiber officinale Roscoe). Critical reviews in food science and nutrition, 52(8), 651-688.

Kumar, S., & Singh, A. (2014). Biopesticides for integrated crop management: environmental and regulatory aspects. J Biofertil Biopestici, 5, e121.

Kumar, S., & Singh, A. (2015). Biopesticides: present status and the future prospects. J Fertil Pestic, 6(2), 100-129.

Kumar, S., Dhillon, R. S., & Randhawa, G. S. (2017). "Chitosan: Molecular properties and agricultural applications." Bioengineering Journal, 5(3), 120-134.

Malerba, M., & Cerana, R. (2018). Recent advances of chitosan applications in plants. Polymers, 10(2), 118.

Mensah, E. K., & Ofori, K. (2020). "Sustainable ginger farming practices in Ghana." Ghana Agricultural Journal, 45(1), 50-62.

Mishra, J., Tewari, S., Singh, S., & Arora, N. K. (2014). Biopesticides: where we stand?. In Plant microbes symbiosis: applied facets (pp. 37–75). New Delhi: Springer India.

Mohanty, S., Behera, S., & Swain, S. (2018). "Climate-resilient ginger cultivation." Journal of Agricultural Sciences, 34(2), 145-153.

Mukherjee, P. K., Bahadur, S., Chaudhary, S. K., Kar, A., & Mukherjee, K. (2015). Quality related safety issue-evidence-based validation of herbal medicine farm to pharma. In Evidence-based validation of herbal medicine (pp. 1–28). Elsevier.

Muralidharan, P., & Thirumalai, P. (2019). "Organic farming practices in turmeric." Indian Journal of Organic Agriculture, 14(1), 78-85.

Nettey, S. N. A., Agodzo, S. K., Fialor, S. C., Marx, W., Asare, D. K., Amoatey, H. M., ... & Djanmah, S. (2017). The Impact of Irrigation on The Reproductive Growth Parameters of Mango In A Coastal Savannah Agro-Ecological Zone of Ghana. African Journal of Applied Research, 3(1), 106-120.

Owino, O. J., Njuguna, E. M., & Mureithi, J. (2019). "Impact of biostimulants on ginger yield under tropical conditions." African Journal of Plant Science, 13(6), 138-147.

Palanisamy, K., & Saravanan, V. (2018). "Plant growth regulators and rhizome development in ginger." South Indian Horticulture, 66(2), 132-140.

Patil, S., Rao, R., & Kumari, N. (2020). "Potassium nutrition in rhizomatous crops." Indian Journal of Agronomy, 65(4), 327-333.

Ravindran, P. N., Babu, K. N., & Shiva, K. N. (2016). Botany and crop improvement of ginger. In Ginger (pp. 35–106). CRC Press.

Ravindran, P., Babu, K. N., & Sivadasan, N. (2016). "Integrated nutrient management in ginger." Spices and Aromatic Crops, 7(1), 21-30.

Reddy, P. P., & Choudhary, B. S. (2018). "Chitosan as a biostimulant in sustainable agriculture." Journal of Bioresources, 24(3), 345–357.

Şenel, S., & McClure, S. J. (2004). Potential applications of chitosan in veterinary medicine. Advanced drug delivery reviews, 56(10), 1467-1480.

Sharma, A., Ghosh, R., & Mishra, P. (2016). "Factors influencing ginger growth and productivity." Agricultural Research Journal, 53(2), 112–119.

Siddiqui, S., Ahmed, N., Devi, C. A., Singh, P. R., & Lalramhlimi, B. (2022). Root Vegetables Having Medicinal Properties: Their Possible Use in Pharmaceutical and Food Industries.

Singh, S., Pandey, R., & Kumar, D. (2017). "Effect of spacing and nitrogen levels on ginger yield." Horticultural Journal, 34(3), 258–263.

Siregar, R. S., Bangun, I. H., Saleh, A., Silalahi, M., Apriyanti, I., Kamaludin, M., & Abogazia, A. H. (2024). Exploring Ginger as Botanical Pesticides for Sustainable Maize Protection, Economic Growth, and Landscape Planning Strategies for Maize in North Sumatra, Indonesia. ARPHA Preprints, 5, e122499.

Sohail, S., Gondal, A. H., Farooq, Q., Tayyaba, L., Zainab, D. E., Ahmad, I. A., ... & Usama, M. (2021). Organic vegetable farming is a valuable way to ensure sustainability and profitability. London: IntechOpen.

Yashin, A., Yashin, Y., Xia, X., & Nemzer, B. (2017). Antioxidant Activity of Spices and Their Impact on Human Health: A Review. Antioxidants (Basel, Switzerland), 6(3), 70.

Yeboah, A., Osei-Bonsu, I., & Amoako, J. (2018). "Disease management in ginger farming in Ghana." Tropical Agriculture Journal, 45(2), 203-211.

Yücel, Ç., Karatoprak, G. Ş., Açıkara, Ö. B., Akkol, E. K., Barak, T. H., Sobarzo-Sánchez, E., ... & Shirooie, S. (2022). Immunomodulatory and anti-inflammatory therapeutic potential of gingerols and their nanoformulations. Frontiers in pharmacology, 13, 902551.

Downloads

Published

2024-12-25

How to Cite

Aduguba, W. O., Oppong-Sekyere, D., & Akumbutum, J. (2024). Growth and Yield Response of Ginger (Zingiber Officinale) to Different Application Levels of High Molecular Weight Chitosan . AFRICAN JOURNAL OF APPLIED RESEARCH, 10(2), 139–152. https://doi.org/10.26437/ajar.v10i2.799